Hierarchical and Pyramidal Clustering for Symbolic Data

P.Brito

Fac. Economia & LIAAD-INESC TEC, Univ. Porto, Portugal

ECI 2015 - Buenos AiresT3: Symbolic Data Analysis: Taking Variability in Data into Account

Outline

- Clustering structures
	- −- From the hierarchical to the pyramidal model
- Symbolic Clustering
	- The generalization procedure
	- − $\hbox{--}$ The generality degree
	- − $\hbox{--}$ The clustering algorithm
	- −– The *HIPYR M*odule of SODAS

Hierarchical Model: set of nested partitions

Let S be the observations set (the set being clustered)

Hierarchy on S:Family H on non-empty subsets of S such that

- ^S[∈] ^H
- [∀] ^s [∈] S , { s } [∈] ^H
- [∀] h, h' [∈] H, h [∩] h' = Ø or $h \subseteq h'$ or $h' \subseteq h$

Pyramidal model:Compatibility between a dissimilarity and an order

S - the observations set (the set being clustered)d - dissimilarity index on S θ - linear order on S

d and $θ$ are COMPATIBLE iff, for any ordered triplet,

$$
s_{i} \theta s_{j} \theta s_{k}
$$
\nd(s_{i}, s_{k}) \ge Max \{ d(s_{i}, s_{j}), d(s_{j}, s_{k}) \}

Pyramid P on S

Family P on non-empty subsets of S such that :

- S ∈ P
- [∀] ^s[∈] S , { s } [∈] ^P
- \bullet \forall p, p' \in P, p \cap p' = Ø or p \cap p' \in P
- There exists a linear order θ : every element of P is an interval of θ

Pyramidal model :

Successor and Predecessor

C – Hierarchy or Pyramid

p ∈ P SUCCESSOR of p'[∈] C if

1) p ⊆ ^p' 2) ¬∃ ^p"∈C : p [⊆] ^p" [⊆] ^p'

p' is a PREDECESSOR of p

Hierarchy : Each cluster has at most ONE predecessor

Pyramid : Each cluster has at most TWO predecessors

Indexed Hierarchy and Indexed Pyramid

(C, f) with

C – Hierarchy or Pyramid

$$
f: C \rightarrow IR^+
$$

a) $f(h) = 0 \Leftrightarrow \#h = 1$
b) $h \subseteq h' \Rightarrow f(h) \le f(h')$

Pyramid Indexed in the Broad Sense :

$$
f(p) = f(p')
$$
 with $p \subset p'$ and $p \neq p' \Rightarrow$
 $\exists p_1 \neq p, p_2 \neq p$ such that $p = p_1 \cap p_2$

Pyramidal (Robinsonian) index

Dissimilarity index d such that :

a)
$$
d(x, y) = 0 \Rightarrow x = y
$$

b) there exists an order θ on S such that

$$
\forall s_i, s_j, s_k \in S, \n s_i \theta s_j \theta s_k \Rightarrow d(s_i, s_k) \ge max \{d(s_i, s_j), d(s_j, s_k)\}
$$

Pyramidal (Robinsonian) index

d (s_i, s_j) = height of the smallest cluster containing s_i and s_j

Johnson-Benzécri Theorem :

Bijection between indexed hierarchies and ultrametricdissimilaritiesHierarchy : d is an ultrametric dissimilarity

Theorem :
Piisetise k

Bijection between pyramids indexed in the broad sense and pyramidal (robinsonian) indices

Pyramid : d is a pyramidal index The matrix of d ordered according to θ is Robinson

Ascending clustering algorithm

Starting with the one element clusters, merge at each step the MERGEABLE clusters for which the dissimilarity (aggregation index) is MINIMUM

Mergeable clusters :

- \bullet if the structure is a hierarchy :
- none of them has been aggregated before ;
- \bullet if the structure is a pyramid :
- none of them has been aggregated twice, and
- there is a total order θ on S such that the new and all previously formed clusters are intervals of θ .

Aggregation Indices :

- Complete Linkage (Maximum Dissimilarity)
- Single Linkage (Minimum Dissimilarity)
- Mean Linkage (Average Dissimilarity)
- Diameter

...

• Ward (Inertia Increase)

→ Lance & Williams recursive formula; generalized to pyramids

Abalone data

Abalone data: Mean linkage pyramid

Abalone data:Mean linkage hierarchy

Abalone data: Complete linkage pyramid

Abalone data: Complete linkage pyramid 10% pruned

Abalone data: Complete linkage hierarchy

From classical to symbolic data

 $\textsf{Description:}$ p-tuple $(\mathsf{d}_1, ..., \mathsf{d}_{\mathsf{p}})$, $\;\mathsf{d}_{\mathsf{j}} \in \mathsf{B}_{\mathsf{j}}$ Description space : $B = B_1 \times ... \times B_p$

Example:

([1000 ,15000] , {drinks (1/4), food (1/2), clothing (1/4)} ,

{Electron, Visa, Mastercard})

Let $S = \{s_1, \ldots, s_n\}$ the observed set

Then $:$ Y $_j({\sf s}_i)\in {\sf B}_j$ j=1, \dots , p, i=1, \dots , n

The data array consists on n descriptions, one for each $\mathsf{s}_\mathsf{i}\in\mathsf{S}\mathsf{:}$

$$
(Y_1(s_i), ..., Y_p(s_i))
$$
, i=1,..., n

Extent and Intent

Extent of a description $d = (d_1, ..., d_p) \in B$, Ext (d) : the set of elements $s \in S$ for which Y $_{\rm j}$ (s) verifies d $_{\rm j}$, j=1,..., p

 $\mathsf{Internet}\; \mathsf{of}\; \mathsf{a}\; \mathsf{subset}\; \mathsf{C}\subseteq \mathsf{S}$, $\mathsf{Int}(\mathsf{C})$: the description d = (d₁, …, d_p) \in B such that d_{j} is the minimal element in $\mathsf{B}_{\mathsf{j}}\,$ (j=1,..., p) fulfilling the condition Y_j (s) verifies d_j ∀s∈C

Example :

d = ([20 , 45]] , [1000 , 4000]) Ext(d)= { s ∈ S : age(s) [⊆] [20 , 45]] [∧] salary(s) [⊆] [1000 , 4000] } Ext (d) = { s1, s² , s³ }

A concept is a pair (C, d) such that

- C is a subset of S
- d is a description, $d \in B$
- d is the intent of C : $Int(C) = d$
- C is the extent of d in E: $Ext_S(d) = C$

Example :

Int ({ s¹, s2 , s3 }) = d = ([20 , 45] , [1000 , 4000])Ext (d) = { s¹, s2,, s3 } Int (Ext (d)) = d({ s1, s² , s³ } , d) is a concept

Symbolic clustering

Objective :

Given a symbolic data array

build an hierarchical / pyramidal clustering

such that each cluster is a concept, i.e., a pair

EXTENSION - its members
INTENSION - its description

Each cluster has an automatic representation in terms of the descriptive variables

Symbolic clustering

- Conceptual clustering methods require:
- •Generalization Operator

 $\mathsf{C} \subseteq \mathsf{C}'$

d' (representing C') is more general than

d (representing C)

•Generality degree measure

Symbolic clustering: Generalisation

→ For a given Extent operator :
d is more general than d' if d is more general than d' if the extent of d contains the extent of d'd' is more specific than ^d

Generalisation of two descriptions d and d' : determining d'' : d'' is more general than both d and d',

 $\mathsf{Ext}\,(\mathsf{d}'')\supseteq \mathsf{Ext}\,(\mathsf{d})$ and $\mathsf{Ext}\,(\mathsf{d}'')\supseteq \mathsf{Ext}\,(\mathsf{d}')$

This procedure differs according to the variable type

Generalisation: Interval variables

 $\mathsf{Consider}\ \mathsf{Ext}(\mathsf{d}) = \{\ \mathsf{s}\in\mathsf{S}: \mathsf{Y}_{\mathsf{j}}(\mathsf{s}) \subseteq \mathsf{d}_{\mathsf{j}}\}$

$$
d_j^{(1)} = [I_1, u_1]
$$
; $d_j^{(2)} = [I_2, u_2]$

 $d_j^{(1)} \cup d_j^{(2)} = [\text{Min } \{I_1, I_2\}, \text{Max } \{u_1, u_2\}]$

Example :Y_j = time (min) needed to go to work $d_i^{(1)} = [5, 15]$; $d_i^{(2)} = [10, 20]$ $d_j^{(1)} \cup d_j^{(2)} = [5, 20]$

Generalisation:Multi-valued categorical variables

Consider Ext(d) = { s \in S : Y_j(s) \subseteq d_j]

$$
d_j^{(1)} = V_1
$$
; $d_j^{(2)} = V_2$

$$
d_j^{(1)} \cup d_j^{(2)} = V_1 \cup V_2
$$

Example :

$$
Y_j = \text{jobs of a group of people}
$$

 $d_j^{(1)} = \{\text{secretary, teacher}\}; d_j^{(2)} = \{\text{employee}\}$
 $d_j^{(1)} \cup d_j^{(2)} = \{\text{secretary, teacher, employee}\}$

Generalisation: Distribution-valued variables

Two possibilities proposed:

take for each category the Maximum of its frequencies

take for each category the Minimum of its frequencies

Distribution-valued variables:Generalisation by the Maximum $d_j^{(1)} \cup d_j^{(2)} = (c_{j1}(p_{j1}^{(1)}), \dots, c_{jk_i}(p_{k_i}^{(1)})) \cup (c_{j1}(p_{j1}^{(2)}), \dots, c_{jk_i}(p_{jk_i}^{(2)})) =$ $t_{i\ell} = \text{Max } \{p_{i\ell}^{(1)}, p_{i\ell}^{(2)}\}$ with $=$ (c_{j1}(t_{j1}), ..., c_{jk_i}(t_{k_i))} Example :Y_j = Type of job (administration (0.3), teaching (0.7), secretary (0.0)) \cup (administration (0.2), teaching (0.6) , secretary (0.2)) $=$ (administration (0.3) , teaching (0.7) , secretary (0.2)) \overline{C}

Extent:
$$
{s_i \in S : p_{j\ell}^{(1)} \leq t_{j\ell}, \ell = 1, ..., k_j}
$$

\n"at most" principle

P Brito ECI Buenos Aires - July 2015

Distribution-valued variables:Generalisation by the Minimum $d_j^{(1)} \cup d_j^{(2)} = (c_{j1}(p_{j1}^{(1)}),...,c_{jk_i}(p_{k_i}^{(1)})) \cup (c_{j1}(p_{j1}^{(2)}),...,c_{jk_i}(p_{jk_i}^{(2)})) =$ $= (c_{j1}(r_{j1}),...,c_{jkj}(r_{kj}))$ $r_i = Min \{p_{i\ell}^{(1)}, p_{i\ell}^{(2)}\}$ with Example :Y_j = Type of job (administration (0.3), teaching (0.7), secretary (0.0)) \cup (administration (0.2), teaching (0.6) , secretary (0.2))= (administration (0.2), teaching (0.6) , secretary (0.0))

Extent:"at least" principle

P Brito ECI Buenos Aires - July 2015

Symbolic clustering: the algorithm

Starting with the one-object clusters $\{s_i\}$, i = 1,...,n

At each step, form a cluster $\,$ p $\,$ union of $\,$ p $_1$, p $_2$ $\frac{1}{2}$ represented by d such that

- p_1 , p_2 can be merged together
- d is more general than d_1 , d_2 : $d = d_1 \cup d_2$
a list (a)
- Int $(p) = d$
- $Ext_E(d) = p$

Non - uniqueness ⇒ numerical criterion
Clusters with rease specific descriptions

 \rightarrow Clusters with more specific descriptions are formed first

Symbolic clustering: Generality degree

$$
d=(d_1,\ldots,d_p)\qquad \ \ O_j\ \ \text{bounded}
$$

Set-valued variables :

Proportion of the description space covered by d

The more possible members of the extent of d , the greater the generality degree of d

Generality degree: Interval-valued variables

$$
G(d_j) = \frac{m(V_j)}{m(O_j)}
$$
 $m(V_j) = max V_j - min V_j$ (range)

Example :

Describing groups of people by age and salaryAge ranges from 15 to 60 , salary ranges from 0 to 10000

0,55 $G(d_1) = \frac{45-20}{60-15} = \frac{25}{45} = 0,55$ $G(d_2) = \frac{3000-1000}{10000} = \frac{2000}{10000} = 0,2$ Consider a group described by $d=[[20, 45]$, $[1000, 3000]$]) = (d_1, d_2)

$$
G(d) = 0,55 \times 0,2 = 0,11
$$

Generality degree: Multi-valued variables

$$
G(d_j) = \frac{m(V_j)}{m(O_j)}
$$
 $m(V_j) = #V_j$ (cardinal)

Example:

Describing groups of people from the UE, defined on variables gender and nationality (28)

Consider one group described by :d= ({ M }, {French, English}) = (d_1, d_2)

$$
G(d_1) = \frac{1}{2} = 0.5
$$
 $G(d_2) = \frac{2}{28} = 0.07$

 $G(d) = 0, 5 \times 0, 07 = 0, 035$

Generality degree: Distribution-valued variables

$$
d_j = (c_{j1}(p_{j1}),...,c_{jk_j}(p_{jk_j}))
$$

Generalising by the Maximum:

$$
G_1(d_j)=\frac{1}{\sqrt{k_j}}\sum_{\ell=1}^{k_j}\sqrt{p_{j\ell}}
$$

which is the affinity coefficient (Matusita, 1951) between (p $_{1\ \ell },...,p_{\mathsf{k_j}})$ and the uniform distribution

 $\mathsf{G}_1(\mathsf{d})$ is maximum (=1) when $\mathsf{p}_{\mathsf{j}\ell}$ = 1/k $_\mathsf{j}$, i=1,...k $_\mathsf{j}$: <u>uniform</u>

This means that we consider a description the more general the more similar it is to the uniform distribution

P Brito ECI Buenos Aires - July 2015

Generality degree: Distribution-valued variables $d_j = (c_{j1}(p_{j1}),...,c_{jk_j}(p_{jk_i}))$

Generalising by the minimum:

$$
G_2(d)=\frac{1}{\sqrt{k_j(k_j-1)}}\sum_{\ell=1}^{k_j}\sqrt{(1-p_{\ell j})}
$$

Again, $G₂(d)$ is maximum (=1)

when
$$
p_{j\ell} = 1/k_j
$$
, i=1,...k : uniform

Symbolic clustering: the algorithm

Starting with the one-object clusters $\{s_i\}$, i = 1,...,n

At each step, form a cluster $\,$ p $\,$ union of $\,$ p $_1$, p $_2$ $\overline{2}$, represented by d such that

- p_1 , p_2 can be merged together
- d is more general than d_1 , d_2 : $d = d_1 \cup d_2$
- Int $(p) = d$ and $Ext_E(d) = p : (p, d)$ is a concept
- G(d) is minimum

Symbolic clustering: the algorithm

The algorithm builds a hierarchy / pyramid on S :each cluster is associated to a descriptionwhose extent is the cluster itself

$$
CLUSTER \leftrightarrow CONCEPT
$$

CLUSTER = (p, d)
 $p = Ext d, d = Int(p)$

automatic representation of the clusters

Example

Y_i : Numerical multi-valued variables

 $P_6: (\{s_1, s_2, s_3\} ; (\{1\}, \{1,2\}, \{1,2\}, \{2,3\}))$ $P_7: (\{s_1, s_2, s_3, s_4\} ; (\{1,2\}, \{1,2\}, \{1,2\}, \{2,3\}))$

Symbolic pyramid : Cluster description

Travel agency data

Travel agency dataSymbolic pyramid

The HIPYR module of the SODAS software

Objective :

Perform Hierarchical or Pyramidal clustering on a symbolic data set

- \bullet from a dissimilarity matrix \rightarrow numerical clustering
- \bullet directly based on the data set \rightarrow symbolic clustering: clusters are concepts

The HIPYR module of the SODAS software

Structure: Hierarchy or Pyramid

Data Source:

- •Dissimilarity Matrix (Numerical Clustering)
- Symbolic objects (Symbolic Clustering)

Aggregation Index:

- • Numerical Clustering: Maximum, Minimum, Average, Diameter
- • Symbolic Clustering: Minimum Generality Minimum Increase in Generality

- Order Variable (optional) : quantitative single variable; to impose an order compatible with the pyramid
- Modal variables generalization :
	- <mark>– Maximum</mark>
	- Minimum
- Use Taxonomies for generalization

(nominal or categorical multi-valued variables) : Y, N

- Select "best" classes : Y, N
- Write induced dissimilarity/generality matrix : Y, N

Induced dissimilarity/generality matrix

For each pair of elements of S, s_i , $s_{i'}$

 $d^*(s_i,s_i')$ = index (height) of the "smallest" class that contains $\, {\sf s}_{{\sf i}} \,$ and ${\sf s}_{{\sf i}'} \,$

$$
d^*(s_i, s_{i'}) = Min \{f(C), s_i \in C, s_{i'} \in C\}
$$

Evaluation of the obtained indexed hierarchy / pyramid:Comparision between the initial and the induced dissimilarity/generality matrices.

Evaluation value

- For $s_i s_j$, i, j, =1,..., n, d(s_i , s_j) :
- the given dissimilarity matrix (numerical clustering)
- generality degree of s_i \cup s_j (symbolic clustering)

$$
\frac{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (d(s_i, s_j) - d^*(s_i, s_j))^2}{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d(s_i, s_j)}
$$

Cluster selection

Identify the most interesting clusters :

A cluster is "interesting" if its variability is smallas compared to its predecessors.Variability indicated by index values f(h).

Compute mean value and standard deviation of height increase values.

A class is selected if the corresponding increase valueis more than 2 stand. dev. over the mean value.

Cluster selection

HIPYR Output

- Text file
- Sodas file
- Interactive Graphical Representation (VPYR)

HIPYR Output

The output listing contains:

- The labels of the individuals
- The labels of the variables
- The description of each node :
	- −− the symbolic object associated to each node
− its extent
	- its extent
- Evaluation value
- •Selected clusters, if asked for
- •The induced matrix, if asked for

P Brito ECI Buenos Aires - July 2015

Graphical Representation

A cluster is selected by clicking on it.

Description of the cluster in terms of

- list of chosen variables
- representation by a Zoom Star

HIPYR - VPYR

Pruning the hierarchy or pyramid using the aggregation

heights as a criterion.

Suppressing cluster p if :

f(p')- $-f(p) < \alpha f(S) \land p$ has a single predecessor

Rate of simplification α chosen by the user,new graphic window with the simplified structure.

Graphical Representation: Pruning

Rule Generation

Hierarchy/pyramid built from a symbolic data table: rules may be generated and saved in a specified file

> Fission method : $d \Rightarrow d_1 \vee d_2$

Fussion method (pyramids only) : d_1 $_1 \wedge {\sf d}_2 {\Rightarrow} {\sf d}$

Rule Generation

Reduction

Should the user be interested in a particular cluster,he may obtain a window with the structure restricted to
... this cluster and its successors.

Graphical Representation: Reduction

