Hierarchical and Pyramidal Clustering for Symbolic Data

P.Brito

Fac. Economia & LIAAD-INESC TEC, Univ. Porto, Portugal

ECI 2015 - Buenos Aires T3: Symbolic Data Analysis: Taking Variability in Data into Account

Outline

- Clustering structures
 - From the hierarchical to the pyramidal model
- Symbolic Clustering
 - The generalization procedure
 - The generality degree
 - The clustering algorithm
 - The HIPYR Module of SODAS

Hierarchical Model: set of nested partitions

Let S be the observations set (the set being clustered)

Hierarchy on S: Family H on non-empty subsets of S such that

- S ∈ H
- $\forall s \in S, \{s\} \in H$
- \forall h, h' \in H, h \cap h' = Ø or h \subseteq h' or h' \subseteq h

Pyramidal model: Compatibility between a dissimilarity and an order

S - the observations set (the set being clustered) d - dissimilarity index on S θ - linear order on S

d and θ are COMPATIBLE iff, for any ordered triplet,

$$\begin{array}{l} {s_i}\,\theta\,{s_j}\,\theta\,{s_k} \\ {d(\,{s_i}\,,\,{s_k}\,)} \geq {Max}\,\{\,{d(\,{s_i}\,,\,{s_j}\,)\,,\,d(\,{s_j}\,,\,{s_k}\,)\,} \} \end{array}$$

Pyramid P on S

Family P on non-empty subsets of S such that :

- ${}^{\bullet} \, S \in P$
- $\forall s \in S , \{s\} \in P$
- $\forall p, p' \in P, p \cap p' = \emptyset \text{ or } p \cap p' \in P$
- There exists a linear order θ : every element of P is an interval of θ

Pyramidal model :

Successor and Predecessor

C – Hierarchy or Pyramid

 $p \in P \text{ SUCCESSOR of } p' \in C \text{ if }$

1) $p \subseteq p'$ 2) $\neg \exists p'' \in C : p \subseteq p'' \subseteq p'$

p' is a PREDECESSOR of p

<u>Hierarchy</u> : Each cluster has at most ONE predecessor

<u>Pyramid</u> : Each cluster has at most TWO predecessors

Indexed Hierarchy and Indexed Pyramid

(C*,* f) with

C – Hierarchy or Pyramid

$$\begin{aligned} f: C &\to | R^+ \\ a) f(h) &= 0 \Leftrightarrow \#h = 1 \\ b) h &\subseteq h' \Longrightarrow f(h) \leq f(h') \end{aligned}$$

Pyramid Indexed in the Broad Sense :

f(p) = f(p') with p⊂ p' and p ≠ p'⇒
∃
$$p_1 \neq p$$
, $p_2 \neq p$ such that $p = p_1 \cap p_2$

P Brito

Pyramidal (Robinsonian) index

Dissimilarity index d such that :

a) d(x , y) = 0
$$\Rightarrow$$
 x = y

b) there exists an order θ on S such that

$$\begin{array}{l} \forall \ s_i \,,\, s_j \,,\, s_k \in S, \\ s_i \,\theta \, s_j \,\theta \, s_k \Longrightarrow d(s_i ,\, s_k) \geq \max \left\{ d(s_i ,\, s_j) \,,\, d(s_j ,\, s_k) \right\} \end{array}$$

Pyramidal (Robinsonian) index

d (s_i , s_j) = height of the smallest cluster containing s_i and s_j

Johnson-Benzécri Theorem :

Bijection between indexed hierarchies and ultrametric dissimilarities Hierarchy : d is an ultrametric dissimilarity

<u>Theorem</u> :

Bijection between pyramids indexed in the broad sense and pyramidal (robinsonian) indices

Pyramid : d is a pyramidal index The matrix of d ordered according to θ is Robinson

Ascending clustering algorithm

Starting with the one element clusters, merge at each step the MERGEABLE clusters for which the dissimilarity (aggregation index) is MINIMUM

Mergeable clusters :

- if the structure is a <u>hierarchy</u> :
- none of them has been aggregated before ;
- if the structure is a <u>pyramid</u> :
- none of them has been aggregated twice, and
- there is a total order θ on S such that the new and all previously formed clusters are intervals of θ .

P Brito

ECI Buenos Aires - July 2015

Aggregation Indices :

- Complete Linkage (Maximum Dissimilarity)
- Single Linkage (Minimum Dissimilarity)
- Mean Linkage (Average Dissimilarity)
- Diameter
- Ward (Inertia Increase)

. . .

Lance & Williams recursive formula; generalized to pyramids

	LENGTH	DIAMETER	HEIGHT	WHOLE_WEIGHT	SHUCKED_WEIGHT	VISCERA_WEIGHT	SHELL_WEIGHT
F_4-6	[0.28 : 0.66]	[0.19:0.47]	[0.07:0.18]	[0.08 : 1.37]	[0.03 : 0.64]	[0.02 : 0.29]	[0.03:0.34]
F_7-9	[0.31 : 0.75]	[0.22:0.58]	[0.01:1.13]	[0.15:2.25]	[0.06:1.16]	[0.03 : 0.45]	[0.05:0.56]
F_10-12	[0.34 : 0.78]	[0.26:0.63]	[0.06:0.23]	[0.20:2.66]	[0.07 : 1.49]	[0.04 : 0.53]	[0.07 : 0.73]
F_13-15	[0.39 : 0.81]	[0.30 : 0.65]	[0.10:0.25]	[0.26:2.51]	[0.11:1.23]	[0.05 : 0.52]	[0.09:0.80]
F_16-18	[0.40 : 0.75]	[0.31 : 0.60]	[0.10:0.24]	[0.35:2.20]	[0.12:0.84]	[0.09:0.48]	[0.12:1.00]
F_22-24	[0.45 : 0.80]	[0.38 : 0.63]	[0.14:0.22]	[0.64 : 2.53]	[0.16:0.93]	[0.11 : 0.59]	[0.24:0.71]
F_19-21	[0.49:0.73]	[0.37 : 0.58]	[0.13:0.21]	[0.68:2.12]	[0.17:0.81]	[0.13:0.45]	[0.20 : 0.85]
F_25-29	[0.55 : 0.70]	[0.47 : 0.58]	[0.18:0.22]	[1.21:1.81]	[0.32:0.71]	[0.20:0.32]	[0.47 : 0.52]
I_1-3	[0.08 : 0.24]	[0.05:0.17]	[0.01 : 0.06]	[0.00:0.07]	[0.00 : 0.03]	[0.00:0.01]	[0.00:0.02]
I_4-6	[0.13:0.58]	[0.09 : 0.45]	[0.00:0.15]	[0.01 : 0.89]	[0.00 : 0.50]	[0.00:0.19]	[0.00:0.35]
I_7-9	[0.26 : 0.67]	[0.19:0.50]	[0.00:0.19]	[0.08:1.30]	[0.03 : 0.60]	[0.01 : 0.32]	[0.03 : 0.39]
I_13-15	[0.32 : 0.66]	[0.25:0.52]	[0.08:0.19]	[0.16:1.69]	[0.06:0.71]	[0.03:0.40]	[0.05:0.42]
I_10-12	[0.34 : 0.73]	[0.26 : 0.55]	[0.09:0.22]	[0.17:2.05]	[0.07 : 0.77]	[0.02:0.44]	[0.06 : 0.65]
I_16-18	[0.44 : 0.65]	[0.33 : 0.52]	[0.13:0.20]	[0.44 : 1.63]	[0.16:0.63]	[0.07 : 0.34]	[0.13:0.53]
I_19-21	[0.45 : 0.58]	[0.35 : 0.44]	[0.12:0.19]	[0.41:1.18]	[0.11 : 0.39]	[0.07 : 0.22]	[0.16:0.31]
M_1-3	[0.16:0.21]	[0.11:0.15]	[0.04 : 0.05]	[0.02:0.04]	[0.01 : 0.02]	[0.00:0.01]	[0.00:0.01]
M_4-6	[0.16 : 0.53]	[0.12:0.41]	[0.03:0.16]	[0.02:0.81]	[0.01 : 0.32]	[0.00:0.15]	[0.00 : 0.35]
M_7-9	[0.20 : 0.73]	[0.16:0.57]	[0.05 : 0.20]	[0.04 : 2.33]	[0.02 : 1.25]	[0.01 : 0.54]	[0.02:0.52]
M_10-12	[0.29 : 0.78]	[0.22 : 0.63]	[0.06 : 0.51]	[0.12:2.78]	[0.04 : 1.35]	[0.03 : 0.76]	[0.04 : 0.68]
M_13-15	[0.35 : 0.76]	[0.25:0.61]	[0.09:0.24]	[0.21 : 2.55]	[0.10:1.35]	[0.05 : 0.57]	[0.06:0.76]
M_16-18	[0.43:0.77]	[0.31 : 0.60]	[0.12:0.24]	[0.35:2.83]	[0.11:1.15]	[0.06:0.48]	[0.13:0.90]
M_19-21	[0.49:0.74]	[0.38 : 0.59]	[0.13:0.23]	[0.57:2.13]	[0.22 : 0.87]	[0.12:0.49]	[0.17:0.58]
M_22-24	[0.51 : 0.69]	[0.40:0.54]	[0.14:0.22]	[0.75:1.84]	[0.25:0.74]	[0.13 : 0.35]	[0.25:0.58]
M 15 10 ◀	10 00 0 0 071	1050-0541	1040-0001	r 4 ne - n 40 1	10 20 - 0 75 1	1040-0201	1000.0001

Abalone data

Abalone data: Mean linkage pyramid

Abalone data:Mean linkage hierarchy

P Brito

Abalone data: Complete linkage pyramid

P Brito

Abalone data: Complete linkage pyramid 10% pruned

Abalone data: Complete linkage hierarchy

From classical to symbolic data

Description: p-tuple $(d_1, ..., d_p)$, $d_j \in B_j$ **Description space :** $B = B_1 \times ... \times B_p$

Example:

([1000,15000], {drinks (1/4), food (1/2), clothing (1/4)},

{Electron, Visa, Mastercard})

Let $S = \{s_1, \ldots, s_n\}$ the observed set

Then : $Y_j(s_i) \in B_j$ j=1,..., p, i=1,..., n

The data array consists on n descriptions, one for each $s_i \in S$:

$$(Y_1(s_i), ..., Y_p(s_i))$$
, i=1,..., n

P Brito

ECI Buenos Aires - July 2015

Extent and Intent

Extent of a description d = $(d_1, ..., d_p) \in B$, Ext (d) : the set of elements $s \in S$ for which Y_j (s) verifies d_j , j=1,..., p

Intent of a subset $C \subseteq S$, Int(C): the description $d = (d_1, ..., d_p) \in B$ such that d_j is the minimal element in B_j (j=1,..., p) fulfilling the condition Y_j (s) verifies $d_j \forall s \in C$

Example :

	age	salary
S ₁	[20 , 45]	[1000 , 3000]
s ₂	[35 , 40]	[1200 , 3500]
S ₃	[25,45]	[2000,4000]
s ₄	[30 , 50]	[2000,3200]

P Brito

A concept is a pair (C, d) such that

- C is a subset of S
- d is a description, d \in B
- d is the intent of C : Int(C) = d
- C is the extent of d in E: Ext_S(d) = C

Example :

	age	salary
s ₁	[20,45]	[1000 , 3000]
s ₂	[35 <i>,</i> 40]	[1200 , 3500]
- S ₃	[25 , 45]	[2000 , 4000]
s ₄	[30 <i>,</i> 50]	[2000 , 3200]

Int
$$(\{s_1, s_2, s_3\}) = d = ([20, 45], [1000, 4000])$$

Ext (d) = $\{s_1, s_2, s_3\}$
Int (Ext (d)) = d
($\{s_1, s_2, s_3\}, d$) is a concept

P Brito

Symbolic clustering

Objective :

Given a symbolic data array

build an hierarchical / pyramidal clustering

such that each cluster is a concept, i.e., a pair

EXTENSION - its members (INTENSION - its description)

 Each cluster has an automatic representation in terms of the descriptive variables

Symbolic clustering

- Conceptual clustering methods require:
- Generalization Operator

 $C \subseteq C'$

d' (representing C') is more general than

d (representing C)

• Generality degree measure

Symbolic clustering: Generalisation

→ For a given Extent operator :
 d is more general than d' if
 the extent of d contains the extent of d'
 d' is more specific than d

Generalisation of two descriptions d and d' : determining d'' : d'' is more general than both d and d',

Ext (d'') \supseteq Ext (d) and Ext (d'') \supseteq Ext (d')

This procedure differs according to the variable type

Generalisation: Interval variables

Consider Ext(d) = { $s \in S : Y_j(s) \subseteq d_j$]

$$d_{j}^{(1)} = [l_{1}, u_{1}] ; d_{j}^{(2)} = [l_{2}, u_{2}]$$

 $d_{j}^{(1)} \cup d_{j}^{(2)} = [Min \{l_{1}, l_{2}\}, Max \{u_{1}, u_{2}\}]$

Example : $Y_j = time (min) needed to go to work$ $d_j^{(1)} = [5, 15] ; d_j^{(2)} = [10, 20]$ $d_j^{(1)} \cup d_j^{(2)} = [5, 20]$

P Brito

Generalisation: Multi-valued categorical variables

Consider Ext(d) = { $s \in S : Y_j(s) \subseteq d_j$]

$$d_{j}^{(1)} = V_{1}$$
; $d_{j}^{(2)} = V_{2}$

$$\mathsf{d_{j}^{(1)}} \cup \mathsf{d_{j}^{(2)}} = \mathsf{V_{1}} \cup \mathsf{V_{2}}$$

Example :

$$\begin{split} Y_{j} &= jobs \text{ of a group of people} \\ d_{j}^{(1)} &= \{ \text{secretary, teacher} \} ; d_{j}^{(2)} &= \{ \text{employee} \} \\ d_{j}^{(1)} &\cup d_{j}^{(2)} &= \{ \text{secretary, teacher, employee} \} \end{split}$$

P Brito

Generalisation: Distribution-valued variables

Two possibilities proposed:

take for each category the Maximum of its frequencies

take for each category the Minimum of its frequencies

Distribution-valued variables: Generalisation by the Maximum $d_{j}^{(1)} \cup d_{j}^{(2)} = (c_{j1}(p_{j1}^{(1)}), \dots, c_{jk_{j1}}(p_{k_{j1}}^{(1)})) \cup (c_{j1}(p_{j1}^{(2)}), \dots, c_{jk_{j1}}(p_{jk_{j1}}^{(2)})) =$ with $t_{i\ell} = Max \{p_{i\ell}^{(1)}, p_{i\ell}^{(2)}\}$ $=(c_{j1}(t_{j1}),...,c_{jk_{j1}}(t_{k_{j1}}))$ Example : $Y_i = Type of job$ (administration (0.3), teaching (0.7), secretary (0.0)) \cup (administration (0.2), teaching (0.6), secretary (0.2)) = (administration (0.3), teaching (0.7), secretary (0.2))

Extent: $\{s_i \in S : p_{j\ell}^{(i)} \le t_{j\ell}, \ell = 1, ..., k_j\}$ "at most" principle

P Brito

ECI Buenos Aires - July 2015

Distribution-valued variables: Generalisation by the Minimum $d_{j}^{(1)} \cup d_{j}^{(2)} = (c_{j1}(p_{j1}^{(1)}), \dots, c_{jk_{j}}(p_{k_{j}}^{(1)})) \cup (c_{j1}(p_{j1}^{(2)}), \dots, c_{jk_{j}}(p_{jk_{j}}^{(2)})) =$ $=(c_{j1}(r_{j1}),\ldots,c_{jk_{j1}}(r_{k_{j1}}))$ $r_i = Min \{p_{i\ell}^{(1)}, p_{i\ell}^{(2)}\}$ with Example : $Y_i = Type of job$ (administration (0.3), teaching (0.7), secretary (0.0)) \cup (administration (0.2), teaching (0.6), secretary (0.2)) = (administration (0.2), teaching (0.6), secretary (0.0))

 $\label{eq:stent: s_i \in S : p_{j\ell}^{(i)} \geq r_{j\ell} \ , \ell = 1, \dots, k_j \} \\ \text{``at least'' principle}$

P Brito

ECI Buenos Aires - July 2015

Symbolic clustering: the algorithm

Starting with the one-object clusters {s_i}, i = 1,...,n

At each step, form a cluster p union of p_1, p_2 , represented by d such that

- p₁, p₂ can be merged together
- d is more general than $d_1, d_2 : d = d_1 \cup d_2$
- Int (p) = d
- $Ext_{E}(d) = p$

Non - uniqueness \Rightarrow numerical criterion

→ Clusters with more specific descriptions are formed first

Symbolic clustering: Generality degree

$$d = (d_1, \dots, d_p)$$
 O_j bounded

Set-valued variables :

Proportion of the description space covered by d

The more possible members of the extent of d , the greater the generality degree of d

Generality degree: Interval-valued variables

$$G(d_j) = \frac{m(V_j)}{m(O_j)} \qquad m(V_j) = \max V_j - \min V_j \quad (range)$$

Example :

Describing groups of people by age and salary Age ranges from 15 to 60, salary ranges from 0 to 10000

Consider a group described by d= ([20, 45], [1000, 3000]]) = (d₁, d₂) $G(d_1) = \frac{45 - 20}{60 - 15} = \frac{25}{45} = 0,55 \qquad G(d_2) = \frac{3000 - 1000}{10000 - 0} = \frac{2000}{10000} = 0,2$

$$G(d) = 0,55 \times 0,2 = 0,11$$

Generality degree: Multi-valued variables

$$G(d_j) = \frac{m(V_j)}{m(O_j)} \qquad m(V_j) = \#V_j \text{ (cardinal)}$$

Example:

Describing groups of people from the UE, defined on variables gender and nationality (28)

Consider one group described by : d= ({ M}, {French, English}) = (d_1, d_2)

$$G(d_1) = \frac{1}{2} = 0,5$$
 $G(d_2) = \frac{2}{28} = 0,07$

P Brito

 $G(d) = 0,5 \times 0,07 = 0,035$

Generality degree: Distribution-valued variables

$$d_{j} = (c_{j1}(p_{j1}), \dots, c_{jk_{j}}(p_{jk_{j}}))$$

Generalising by the Maximum:

$$G_1(d_j) = \frac{1}{\sqrt{k_j}} \sum_{\ell=1}^{k_j} \sqrt{p_{j\ell}}$$

which is the affinity coefficient (Matusita, 1951) between $(p_{1 \ell},...,p_{k_i})$ and the uniform distribution

 $G_1(d)$ is maximum (=1) when $p_{i\ell} = 1/k_i$, i=1,... $k_i : uniform$

This means that we consider a description the more general the more similar it is to the uniform distribution

P Brito

ECI Buenos Aires - July 2015

Generality degree: Distribution-valued variables $d_j = (c_{j1}(p_{j1}), ..., c_{jk_j}(p_{jk_j}))$

Generalising by the minimum:

$$G_{2}(d) = \frac{1}{\sqrt{k_{j}(k_{j}-1)}} \sum_{\ell=1}^{k_{j}} \sqrt{(1-p_{\ell j})}$$

Again, $G_2(d)$ is maximum (=1)

when
$$p_{j\ell} = 1/k_j$$
, i=1,...k : uniform

P Brito

Symbolic clustering: the algorithm

Starting with the one-object clusters $\{s_i\}, i = 1,...,n$

At each step, form a cluster p union of p_1, p_2 , represented by d such that

- p₁, p₂ can be merged together
- d is more general than $d_1, d_2 : d = d_1 \cup d_2$
- Int (p) = d and Ext_E (d) = p : (p, d) is a concept
- G(d) is minimum

Symbolic clustering: the algorithm

The algorithm builds a hierarchy / pyramid on S : each cluster is associated to a description whose extent is the cluster itself

CLUSTER
$$\leftrightarrow$$
 CONCEPT
CLUSTER = (p, d) p = Ext d, d = Int(p)

automatic representation of the clusters

Example

	Y ₁	Y ₂	Y ₃	Y ₄
S ₁	1	1	1	2
S ₂	1	2	1	3
S ₃	1	2	2	2
S ₄	2	1	1	2
S 5	3	3	2	1

Y_i: Numerical multi-valued variables

 $P_{6}: (\{s_{1}, s_{2}, s_{3}\}; (\{1\}, \{1,2\}, \{1,2\}, \{2,3\}))$ $P_{7}: (\{s_{1}, s_{2}, s_{3}, s_{4}\}; (\{1,2\}, \{1,2\}, \{1,2\}, \{2,3\}))$

Symbolic pyramid : Cluster description

name		"Class_74/86"				
label		"C_74/86"				
height		0.176758				
symbolic	variable list (conjunction of)					
Object description	name 🔻	value				
uescription	ABOO	[0.29, 0.815]				
	AC00	[0.225, 0.65]				
	AD00	[0.06, 0.515]				
	AE00	[0.12, 2.8255]				
	AF00	[0.0415, 1.488]				
	AG00	[0.026, 0.76]				
	AHOO	[0.04, 1.005]				
base object list	I_13-15, I_16-18, I_19 F_10-12, M_10-12	9-21, M_22-24, F_25-29, M_25-29, F_19-21, M_19-21, F_22-24, F_16-18, M_16-18, F_13-15, M_13-15,				

Travel agency data

	pays_client	resort	intervallePrice	age_range	pays
Restaurant in U	US (0.45), Germa (0.09), Japan (0.45)	Baham (0.64), Hawai (0.36)	[95.00 : 150.00]	25-39 (0.35), 51-70 (0.27), 18-24 (0.38)	US
Hotel Room in U	US (0.33), Germa (0.33), Japan (0.33)	Baham (0.50), Hawai (0.50)	[192.00 : 195.00]	25-39 (0.32), 18-24 (0.68)	US
Hotel Room in F	US (0.33), Germa (0.33), Japan (0.33)	Frenc (1.00)	[170.00 : 170.00]	25-39 (0.33), 18-24 (0.67)	Franc
Restaurant in F	US (0.50), Japan (0.50)	Frenc (1.00)	[85.00 : 85.00]	25-39 (0.50), 18-24 (0.50)	Franc
Excursion in US	US (0.50), Japan (0.50)	Baham (0.50), Hawai (0.50)	[100.00 : 100.00]	25-39 (0.04), 40-50 (0.96)	US
Bungalow in US	US (0.33), Germa (0.33), Japan (0.33)	Baham (0.50), Hawai (0.50)	[150.00 : 160.00]	25-39 (0.04), 40-50 (0.96)	US
Excursion in Fr	US (0.50), Japan (0.50)	Frenc (1.00)	[175.00 : 175.00]	40-50 (1.00)	Franc
Bungalow in Fra	US (0.33), Germa (0.33), Japan (0.33)	Frenc (1.00)	[120.00:120.00]	40-50 (1.00)	Franc
Hotel Suite in	US (0.33), Germa (0.33), Japan (0.33)	Baham (0.50), Hawai (0.50)	[292.00 : 295.00]	51-70 (0.96), Over (0.04)	US
Poolside Bar in	US (0.50), Japan (0.50)	Baham (0.50), Hawai (0.50)	[80.00 : 85.00]	51-70 (0.96), Over (0.04)	US
Hotel Suite in	US (0.33), Germa (0.33), Japan (0.33)	Frenc (1.00)	[270.00 : 270.00]	51-70 (1.00)	Franc
Poolside Bar in	US (0.50), Japan (0.50)	Frenc (1.00)	[120.00:120.00]	51-70 (1.00)	Franc
Activities in U	Germa (1.00)	Baham (0.50), Hawai (0.50)	[150.00 : 200.00]	18-24 (1.00)	US
Activities in F	Germa (1.00)	Frenc (1.00)	[50.00 : 50.00]	18-24 (1.00)	Franc
Sports in US	Germa (1.00)	Baham (0.50), Hawai (0.50)	[100.00 : 150.00]	51-70 (0.96), Over (0.04)	US
Sports in Franc	Germa (1.00)	Frenc (1.00)	[190.00 : 190.00]	51-70 (1.00)	Franc
Fast Food in US	Germa (1.00)	Baham (0.50), Hawai (0.50)	[80.00 : 105.00]	25-39 (0.04), 40-50 (0.96)	US
East Food in Fr	Germe (1.00)	Frenc (1.00)		40 50 (4 00)	Frenc

Travel agency data Symbolic pyramid

P Brito

name		"Class_115/116"				
label		"C_115/116"				
height		0.0441423				
symbolic	lic variable list (conjunction of)					
object	name	name value				
uescription	AB00	(janvier(0.25), février(0.25), mars(0.25), avril(0.25), mai(0.25), juin(0.25), juillet(0.25), août(0.25), s				
	AC00 [18, 68]					
	AD00 [4,12]					
	AE00 [2, 8]					
	AF00 (South(0.5), West(0.5), East Coast(0.0151515), Mid West(0.5), Bavaria(1), East Germany(
	AG00 (US(0.5), Germany(1), Japan(0.5))					
	AH00	(Bahamas Beach(0.636364), French Riviera(1), Hawaiian Club(0.363636))				
base object list	"AA00", "AA03", "AA02	", "AA13", "AA15", "AA17", "AA07", "AA06", "AA11", "AA10"	•			

The *HIPYR* module of the *SODAS* software

Objective :

Perform Hierarchical or Pyramidal clustering on a symbolic data set

- from a dissimilarity matrix
 → numerical clustering
- directly based on the data set
 → symbolic clustering: clusters are concepts

The *HIPYR* module of the *SODAS* software

Structure: Hierarchy or Pyramid

P Brito

Data Source:

- Dissimilarity Matrix (Numerical Clustering)
- Symbolic objects (Symbolic Clustering)

Aggregation Index:

- Numerical Clustering: Maximum, Minimum, Average, Diameter
- Symbolic Clustering: Minimum Generality Minimum Increase in Generality

- Order Variable (optional) : quantitative single variable; to impose an order compatible with the pyramid
- Modal variables generalization :
 - Maximum
 - Minimum
- Use Taxonomies for generalization

(nominal or categorical multi-valued variables) : Y, N

- Select "best" classes : Y, N
- Write induced dissimilarity/generality matrix : Y, N

Parameters		Preferences
	Build an : O Hierarchy O Pyrami	d
Г		Default
	Data source 🔘 Dissimilitary matrix	O Symbolic objects Save
	Aggregation function	
	E Calcol and a control to	
Γ	Modal variables generalization type	Taxonomy
	O Maximum O Minimum	Use taxonomies
L	Selection	
	Select "bes	t" classes
text file -		
O Nam	s O Label 🔽 Best fit 🔽	Write induced matrix

1-1-1

	Methods Clustering Hi Hierarchical - Clus DIV ClustCl S CLI CLASS N T	Hierarchical and Pyramidal Clustering Parameters Build an : Hierarchy Pyramid Data source Dissimilitary matrix Symbolic objects Aggregation function Generality Degree Image: Comparison of the source Modal variables Image: Comparison of the source Taxonomy Modal variables Image: Comparison of the source Image: Comparison of the source Modal variables Image: Comparison of the source Taxonomy Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source Image: Comparison of the source<	
Variables Symbolic objects Save output in Sadao filo C:\ 2.0\bases\abalone_06.sds OK Cancel		Variables Symbolic objects Parameters Save output in Sadas file C:\ 2.0\bases\abalone_06.sds OK Cancel	

Induced dissimilarity/generality matrix

For each pair of elements of S , s_i , $s_{i'}$

 $d^*(s_i, s_{i'}) = index$ (height) of the "smallest" class that contains s_i and $s_{i'}$

$$d^*(s_i, s_{i'}) = Min \{f(C), s_i \in C, s_{i'} \in C\}$$

Evaluation of the obtained indexed hierarchy / pyramid: Comparision between the initial and the induced dissimilarity/generality matrices.

Evaluation value

For $s_i s_{j_i}$, i, j, =1,..., n, $d(s_i, s_j)$:

P Brito

- the given dissimilarity matrix (numerical clustering)
- generality degree of $s_i \cup s_i$ (symbolic clustering)

$$EV = \frac{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (d(s_{i}, s_{j}) - d^{*}(s_{i}, s_{j}))^{2}}{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d(s_{i}, s_{j})}$$

Cluster selection

Identify the most interesting clusters :

A cluster is "interesting" if its variability is small as compared to its predecessors.

Variability indicated by index values f(h).

Compute mean value and standard deviation of height increase values.

A class is selected if the corresponding increase value is more than 2 stand. dev. over the mean value.

Cluster selection

HIPYR Output

- Text file
- Sodas file
- Interactive Graphical Representation (VPYR)

HIPYR Output

The output listing contains:

- The labels of the individuals
- The labels of the variables
- The description of each node :
 - the symbolic object associated to each node
 - its extent
- Evaluation value
- •Selected clusters, if asked for
- •The induced matrix, if asked for

P Brito

ECI Buenos Aires - July 2015

Graphical Representation

A cluster is selected by clicking on it.

Description of the cluster in terms of

list of chosen variables

P Brito

representation by a Zoom Star

HIPYR - VPYR

Pruning the hierarchy or pyramid using the aggregation

heights as a criterion.

Suppressing cluster p if :

 $f(p') - f(p) < \alpha f(S) \land p$ has a single predecessor

Rate of simplification α chosen by the user, new graphic window with the simplified structure.

options	×
Selection Pruning	
simplification value	

Graphical Representation: Pruning

Rule Generation

Hierarchy/pyramid built from a symbolic data table: rules may be generated and saved in a specified file

> Fission method : $\mathbf{d} \Longrightarrow \mathbf{d}_1 \lor \mathbf{d}_2$

Fussion method (pyramids only) : $d_1 \wedge d_2 \Rightarrow d$

P Brito

Rule Generation

Reduction

Should the user be interested in a particular cluster, he may obtain a window with the structure restricted to this cluster and its successors.

P Brito

Graphical Representation: Reduction

