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Clustering structures

• S ∈ H

• ∀ s ∈ S , { s } ∈ H

• ∀ h, h' ∈ H,   h ∩ h' = Ø or 

h ⊆ h' or   h' ⊆ h
x1 x2 x3 x4 x5

h

h'

Hierarchical Model:   set of nested partitions

Let S be the observations set (the set being clustered)

Hierarchy on S:

Family  H on non-empty subsets of S such that 
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Pyramidal model:
Compatibility between a dissimilarity and an order

S - the observations set (the set being clustered)

d - dissimilarity index on S

θ - linear order on S

d and θ are COMPATIBLE iff, for any ordered triplet,

si θ sj θ sk

d( si , sk ) ≥ Max { d( si , sj ) , d( sj , sk ) }

Clustering structures



P Brito                                  ECI Buenos Aires - July 2015

Pyramid P on S

Family P on non-empty subsets of S such that :

• S ∈ P

• ∀ s ∈ S , { s } ∈ P

• ∀ p, p' ∈ P,   p ∩ p' = Ø   or p ∩ p' ∈ P

• There exists a linear order θ : every element of P is an interval of θ

Pyramidal model :

x1 x2 x3 x4 x5
Hierarchy : nested partitions 

Pyramid : nested overlappings

Clustering

Seriation

Clustering structures
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Successor and Predecessor

C – Hierarchy or Pyramid

p ∈ P SUCCESSOR of  p'∈ C if

1)   p ⊆ p’        2)   ¬∃ p"∈C  : p ⊆ p” ⊆ p'

p' is a PREDECESSOR of  p

Pyramid : Each cluster has at 

most TWO predecessors

x1 x2 x3 x4 x5x1 x2 x3 x4 x5

h

h'

Hierarchy : Each cluster has at 

most ONE predecessor

Clustering structures
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Indexed Hierarchy and Indexed Pyramid

(C, f)  with

C – Hierarchy or Pyramid

f : C → |R+

a) f(h) = 0 ⇔#h = 1

b) h ⊆ h' ⇒ f(h) ≤ f(h')

x1 x2

h

h'

x3 x4 x5
0

f(h)

f(h')

Pyramid Indexed in the Broad Sense :

f(p) = f(p’) with p⊂ p’ and p ≠ p’⇒

∃ p1≠ p, p2≠ p such that p= p1∩ p2

Clustering structures
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Dissimilarity index d  such that :

a) d(x , y) = 0 ⇒ x = y

b) there exists an order θ on S such that  

∀ si , sj , sk ∈ S, 

si θ sj θ sk ⇒ d(si, sk) ≥ max {d(si, sj) , d(sj, sk) }

Pyramidal (Robinsonian) index
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d (si, sj) = height of the smallest cluster containing si and sj

Johnson-Benzécri Theorem :

Bijection between indexed hierarchies and  ultrametric

dissimilarities

Hierarchy :  d  is an ultrametric dissimilarity

Theorem :

Bijection between pyramids indexed in the broad sense 

and pyramidal (robinsonian) indices

Pyramid : d is a pyramidal index 

The matrix of d ordered according to θ is Robinson

Pyramidal (Robinsonian) index
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Ascending clustering algorithm

Starting with the one element clusters, 

merge at each step the MERGEABLE clusters 

for which the dissimilarity (aggregation index) is MINIMUM

Mergeable clusters :

• if the structure is a hierarchy :  

• none of them has been aggregated before ;

• if the structure is a pyramid : 

• none of them has been aggregated twice, and

• there is a total order θ on S such that the new and all 

previously formed clusters are  intervals of θ.

Clustering structures
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Aggregation Indices :

• Complete Linkage (Maximum Dissimilarity)

• Single Linkage (Minimum Dissimilarity)

• Mean Linkage (Average Dissimilarity)

• Diameter

• Ward (Inertia Increase)

...

Lance & Williams recursive formula; generalized to pyramids

Clustering structures
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Abalone 

data
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Abalone data: Mean linkage pyramid
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Abalone data:Mean linkage hierarchy



P Brito                                  ECI Buenos Aires - July 2015

Abalone data: Complete linkage pyramid
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Abalone data: 

Complete linkage pyramid 10% pruned
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Abalone data: Complete linkage hierarchy
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Description: p-tuple (d
1
, …, d

p
) ,    d

j
∈ B

j

Description space : B = B
1

× … × B
p

Example:

([1000 ,15000] , {drinks (1/4), food (1/2), clothing (1/4)} ,

{Electron, Visa, Mastercard})

Let S = {s
1
, …, s

n
} the observed set

Then : Y
j
(s

i
) ∈ B

j
j=1,…, p, i=1,…, n

The data array consists on n descriptions, one for each s
i
∈ S:

(Y
1
(s

i
), …, Y

p
(s

i
))   ,   i=1,…, n

From classical to symbolic data
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Extent and Intent

Extent of a description d = (d
1
, …, d

p
) ∈ B , 

Ext (d) : the set of elements s ∈ S  for which 

Yj (s) verifies dj ,  j=1,…, p

Intent of a subset C ⊆ S , Int(C) :

the description d = (d
1
, …, d

p
) ∈ B

such that d
j
is the minimal element in B

j
(j=1,…, p) 

fulfilling the condition Yj (s) verifies dj ∀s∈C
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Example :

age              salary

s
1

[ 20 , 45] [1000 , 3000]

s
2

[ 35 , 40] [1200 , 3500]

s
3

[ 25 , 45] [2000 , 4000]

s
4

[ 30 , 50] [2000 , 3200]

d = ( [ 20 , 45]] , [1000 , 4000] ) 

Ext(d)= { s ∈ S : age(s) ⊆ [ 20 , 45]] ∧ salary(s) ⊆ [1000 , 4000] }

Ext (d) = { s1 , s2 , s3 }
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A concept is a pair (C, d) such that

• C is a subset of S

• d is a description, d ∈ B

• d is the intent of C : Int(C) = d

• C is the extent of d in E: ExtS(d) = C

Concept
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Example :

Int ({ s1 , s2 , s3 }) = d = ( [ 20 , 45]  , [1000 , 4000] )

Ext (d) = { s1 , s2,, s3 }

Int (Ext (d)) = d

({ s1 , s2 , s3 } , d) is a concept

age               salary

s
1

[ 20 , 45] [1000 , 3000]

s
2

[ 35 , 40] [1200 , 3500]

s
3

[ 25 , 45] [2000 , 4000]

s
4

[ 30 , 50] [2000 , 3200]
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Objective :

Given a symbolic data array

build an hierarchical / pyramidal clustering 

such that each cluster  is a concept, i.e., a pair

Symbolic clustering

Each cluster has an automatic representation 

in terms of the descriptive variables
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Symbolic clustering

Conceptual clustering methods require:

• Generalization Operator

C ⊆ C’ 

d’ (representing C’)    is more general than 

d (representing C) 

• Generality degree measure
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Symbolic clustering: Generalisation

→ For a given Extent operator :
d is more general than d’ if

the extent of d contains the extent of d’

d’ is more specific than d

Generalisation of two descriptions d and d’ : 
determining  d’’ : d’’ is more general than both d and d’,

This procedure differs according to the variable type

Ext (d’’)  ⊇ Ext (d)    and    Ext (d’’)  ⊇ Ext (d’)
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Generalisation: Interval variables

Consider Ext(d) = { s ∈ S : Yj(s) ⊆ dj]

dj 
(1) = [l1, u1]  ;    dj 

(2) = [l2, u2] 

dj 
(1) ∪ dj 

(2) = [Min {l1,l2}, Max {u1,u2}]

Example :
Yj = time (min) needed to go to work

dj 
(1) = [5, 15] ;   dj 

(2) = [10, 20] 

dj 
(1) ∪ dj 

(2) = [ 5, 20 ]
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Generalisation:

Multi-valued categorical variables

Consider Ext(d) = { s ∈ S : Yj(s) ⊆ dj]

dj
(1) =  V1 ;   dj

(2) =  V2

dj
(1) ∪ dj

(2) = V1 ∪ V2

Example :

Yj = jobs of a group of people

dj
(1) = {secretary, teacher} ;   dj

(2) = {employee}

dj
(1) ∪ dj

(2) = {secretary, teacher, employee}
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Generalisation: 

Distribution-valued variables

Two possibilities proposed:

take for each category the Maximum of its frequencies

take for each category the Minimum of its frequencies



P Brito                                  ECI Buenos Aires - July 2015

Distribution-valued variables:

Generalisation by the Maximum

with 

Example :

Yj = Type of job

(administration  (0.3), teaching (0.7) , secretary (0.0) )  ∪

(administration  (0.2), teaching (0.6) , secretary (0.2) )

= (administration  (0.3), teaching (0.7) , secretary (0.2) )

Extent:

“at most”  principle
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Distribution-valued variables:

Generalisation by the Minimum

with 

Example :

Yj = Type of job

(administration  (0.3), teaching (0.7) , secretary (0.0))  ∪

(administration  (0.2), teaching (0.6) , secretary (0.2) )

= (administration  (0.2), teaching (0.6) , secretary (0.0) )

Extent:

“at least”  principle
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Symbolic clustering: the algorithm

• p1, p2 can be merged together 

• d is more general than d1, d2 : d = d1 ∪ d2

• Int (p) = d

• ExtE (d) = p

Non - uniqueness ⇒ numerical  criterion

Clusters with more specific descriptions are formed first

Starting with the one-object clusters  {si}, i = 1,…,n

At each step, form a cluster   p  union of   p1 , p2 , 

represented by d such that
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Symbolic clustering: Generality degree

Oj bounded

Set-valued variables : 

Proportion of the description space covered by d

The more possible members of the extent of d , 

the greater the generality degree of d 

)d,,(dd p1 K=
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Generality degree: Interval-valued variables

m(Vj) = max Vj – min Vj (range)

55,0
45

25

1560

2045
)

1
d(G ==

−

−

= 2,0
10000

2000

010000

10003000
)

2
d(G ==

−

−

=

11,02,055,0)d(G =×=

Example :
Describing groups of people by age and salary

Age ranges from 15 to 60 , salary ranges from 0 to 10000

Consider a group described by

d= ([ 20 , 45] , [1000 , 3000]]) = (d1, d2)

    
)(O m

)(V m
 = )(d G

j

j
j
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Generality degree: Multi-valued variables

m(Vj) = # Vj (cardinal)

Example: 
Describing groups of people from the UE, 

defined on variables gender and nationality (28)

5,0
2

1
)

1
d(G == 0,07

28

2
)2G(d ==

0,0350,070,5G(d) =×=

Consider one group described by :

d= ( { M } , {French, English} ) = (d1, d2)

    
)(O m

)(V m
 = )(d G

j

j
j
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which is the affinity coefficient (Matusita, 1951) between 

(p1 l
,…,pkj

) and the uniform distribution

This means that we consider a description 

the more general the more similar it is 

to the uniform distribution

G1(d) is maximum (=1) when pjl = 1/kj, i=1,…kj : uniform

Generality degree: 

Distribution-valued variables

Generalising by the Maximum:
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Again, G2(d) is maximum (=1)

when  pjl = 1/kj, i=1,…k  : uniform

Generalising by the minimum: 

Generality degree: 

Distribution-valued variables
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Starting with the one-object clusters    { si }, i = 1,…,n

Symbolic clustering: the algorithm

At each step, form a cluster   p  union of   p1 , p2 , 

represented by d such that

• p1, p2 can be merged together 

• d is more general than d1, d2 : d = d1 ∪ d2

• Int (p) = d and ExtE (d) = p : (p , d) is a concept

• G(d) is minimum
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The algorithm builds a hierarchy / pyramid on S :

each cluster is associated to a description

whose extent is the cluster itself 

automatic representation of the clusters

CLUSTER ↔ CONCEPT

CLUSTER = (p, d)          p = Ext d,   d = Int(p)

Symbolic clustering: the algorithm



Example
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 Y1 Y2 Y3 Y4 

s1 1 1 1 2 

s2 1 2 1 3 

s3 1 2 2 2 

s4 2 1 1 2 

s5 3 3 2 1 

Yj : Numerical multi-valued variables
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s4  s1  s2  s3  s5  

2/54  

4/54  

8/54  

16/54  

24/54  

32/54  

1  

P1  
P2  

P3  

P4  
P5  P6  

P7  

P8  

P9  

P10  

P6 :  ( {s1, s2, s3} ; ( {1} ,{1,2} , {1,2}, {2,3} ) )

P7 :   ( {s1, s2, s3, s4} ; ( {1,2} ,{1,2} , {1,2}, {2,3} ) )
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Abalone data

Symbolic pyramid
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Symbolic pyramid : Cluster description
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Travel agency data
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Travel agency data

Symbolic pyramid
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The HIPYR module 

of the SODAS software
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Objective :

Perform Hierarchical or Pyramidal clustering on a 

symbolic data set

• from a dissimilarity matrix

→ numerical clustering

• directly based on the data set

→ symbolic clustering: clusters are concepts
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The HIPYR module 

of the SODAS software
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HIPYR : Main Parameters

Structure: Hierarchy or Pyramid

Data Source:

Aggregation Index:

• Dissimilarity Matrix (Numerical Clustering)

• Symbolic objects (Symbolic Clustering)

• Numerical Clustering: Maximum, Minimum, Average, 

Diameter

• Symbolic Clustering: Minimum Generality 

Minimum Increase in Generality
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HIPYR : Main Parameters

• Order Variable (optional) : quantitative single variable;

to impose an order compatible with the pyramid

• Modal variables generalization :

− Maximum

− Minimum

• Use Taxonomies for generalization

(nominal or categorical multi-valued variables) : Y, N

• Select “best” classes : Y, N

• Write induced dissimilarity/generality matrix : Y, N
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HIPYR : Main Parameters
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HIPYR : Main Parameters



Induced dissimilarity/generality matrix
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For each pair of elements of S ,si  , si’

d*(si ,si’) = index (height) of the “smallest” class that 

contains  si and si’

d*(si ,si’) = Min  {f(C), si ∈ C, si’ ∈ C} 

Evaluation of the obtained indexed hierarchy / pyramid:

Comparision between the initial and the induced 

dissimilarity/generality matrices.



Evaluation value
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For  si sj, i, j, =1,..., n,  d(si, sj) : 

• the given dissimilarity matrix (numerical clustering)

• generality degree of si ∪ sj (symbolic clustering)



Cluster selection
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Identify the most interesting clusters :

A cluster is “interesting” if its variability is small 

as compared to its predecessors.

Variability indicated by index values f(h).

Compute mean value and standard deviation 

of height increase values.

A class is selected if the corresponding  increase value

is more than 2  stand. dev. over the mean value.



Cluster selection
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C  



HIPYR Output

• Text file

• Sodas file

• Interactive Graphical Representation (VPYR)
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The output listing contains:

• The labels of the individuals

• The labels of the variables

• The description of each node :

− the symbolic object associated to each node 

− its extent

• Evaluation value

•Selected clusters, if asked for

•The induced matrix, if asked for

HIPYR Output
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Graphical Representation
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A cluster is selected by clicking on it.

Description of the cluster in terms of 

• list of chosen variables

• representation by a Zoom Star

Graphical Representation: Options
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Graphical Representation: Options



Graphical Representation
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Buenos Aires - July 2015

Graphical Representation: Options
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HIPYR - VPYR



Graphical Representation: Options
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Pruning the hierarchy or pyramid using the aggregation

heights as a criterion.

Suppressing cluster p if :

f(p’) - f(p) < α f(S) ∧ p has a single predecessor

Rate of simplification α

chosen by the user,

new graphic window with 

the simplified structure.



Graphical Representation: Pruning
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Rule Generation
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Hierarchy/pyramid built from a symbolic data table:

rules may be generated and saved in a specified file

(p
1
,d

1
) (p

2
,d

2
)

(p,d)

(p
1
,d

1
) (p

2
,d

2
)

(p,d)

Fission method : 

d ⇒ d
1 
∨ d

2

Fussion method

(pyramids only) : 

d
1
∧ d

2
⇒ d



Rule Generation
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Graphical Representation: Options
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Reduction

Should the user be interested in a particular cluster,

he may obtain a window with the structure restricted to 

this cluster and its successors.



Graphical Representation: Reduction

P Brito                                  ECI Buenos Aires - July 2015


