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A parametric modelling for interval data is proposed, assuming a multivariate Normal or Skew-Normal
distribution for the midpoints and log-ranges of the interval variables. The intrinsic nature of the inter-
val variables leads to special structures of the variance–covariance matrix, which is represented by five
different possible configurations. Maximum likelihood estimation for both models under all considered
configurations is studied. The proposed modelling is then considered in the context of analysis of variance
and multivariate analysis of variance testing. To access the behaviour of the proposed methodology, a sim-
ulation study is performed. The results show that, for medium or large sample sizes, tests have good power
and their true significance level approaches nominal levels when the constraints assumed for the model are
respected; however, for small samples, sizes close to nominal levels cannot be guaranteed. Applications to
Chinese meteorological data in three different regions and to credit card usage variables for different card
designations, illustrate the proposed methodology.

Keywords: symbolic data; parametric modelling of interval data; statistical tests for interval data; Skew-
Normal distribution; ANOVA; MANOVA

1. Introduction

In classical multivariate data analysis, data are represented in an n × p data-matrix where n

“individuals” (usually in rows) take exactly one value for each variable (usually in columns).
This structure is however too simple to represent more complex data, where the information for
an individual on each variable is not reduced to a single value. Symbolic data analysis [5,7,11]
provides a framework where new variable types allow to take directly into account variability
and/or uncertainty associated to each single “individual”, avoiding restrictive summarizations to
impose a fit to the classical representation structure. Symbolic data extend the classical tabular
model by allowing multiple, possibly weighted, values for each variable. New variable types –
interval, categorical multi-valued and modal variables – are introduced.
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4 P. Brito and A.P. Duarte Silva

In this paper, we focus on the analysis of interval data, i.e., where elements are characterized by
variables whose values are intervals on R. Interval data may occur in many different situations. We
may have native interval data, when describing ranges of variable values – for example, daily stock
prices or temperature ranges. Interval variables also allow dealing with imprecise data, coming
from repeated measures or confidence interval estimation. A natural source of interval data is
the aggregation of huge data bases, when real values describing the individual observations lead
to intervals describing the aggregated data. Original symbolic data – concerning, for instance,
descriptions of biological species or technical specifications – constitute yet another possible
source of interval data.

In the context of interval data, mention should be made to Interval Calculus [9,15], a discipline
that has derived rules for dealing with interval values.

Most existing methods developed so far for the analysis of symbolic data consider non-
parametric exploratory approaches [7,11]. Our goal is to develop parametric inference methodolo-
gies based on probabilistic models for interval variables. In the proposed approach, each interval
is represented by its midpoint and log-range, for which Normal or Skew-Normal distributions
are assumed. Therefore, as we do not operate directly on intervals, rules of Interval Calculus
do not apply in our framework. The intrinsic nature of the interval variables leads to special
structures of the variance–covariance matrix, which are represented by five different possible
configurations. We show that in Normal models maximum likelihood inference can be carried out
with simple analytical formulae in four out of the five configurations. In all configurations of the
Skew-Normal model, as well as in the remaining configuration of the Normal model, maximum
likelihood inference is performed with numerical optimization procedures, which are studied and
implemented. This methodology is then considered in the context of (M)ANOVA testing, and
statistical properties are analysed through a simulation experiment.

The proposed approach provides the adequate tool for hypothesis testing when variables are
intrinsically interval-valued.

Consider a situation where you wish to analyse whether some performance variables (e.g. sales,
nb. customers, etc.) vary among different towns for shops of a given chain, for each of which you
have daily data. Although shops may be considered independent, daily observations for a given
shop are not independent, so that the whole set of daily observations may not be considered a
random sample. Also, if we summarize data for a given shop by an average, the information as
concerns its variation from day to day is lost. Aggregating these data in the form of intervals
enables us to keep relevant information. A multivariate analysis of variance (MANOVA) for the
resulting interval data then allows investigating whether performance variables vary across towns.

To the best of our knowledge, few authors have addressed inference problems in this context.
Some steps in this direction have been taken in [6]. Related problems have been considered in [12]
where some inferential procedures for “interval-valued random sets” are developed, based on the
rules of Interval Calculus and appropriate definitions of integrals and expected values for these
sets. These procedures have been applied to analysis of variance (ANOVA) and ANCOVA in [10].
In our paper, a simpler but more general approach is pursued, by modelling an interval directly
by its midpoint and range. Krätschmer [14] has addressed the problem of parameter estimation
with random fuzzy sets, following a different approach.

The structure of this paper is the following: Section 2 introduces interval variables, presents
the interval representation to be used in the sequel and fixes notation. A modelling based on the
Normal distribution and its application to M(ANOVA) is presented in Section 3. In Section 4, the
Skew-Normal distribution is reviewed, and applied to the modelling and analysis of interval data.
Section 5 presents a simulation study, while Section 6 describes two applications to real data.
Section 7 concludes the paper, presenting perspectives for further research. Analytical gradients
required for the numerical optimization of the log-likelihood in the Skew-Normal model, for all
configurations, are given in the appendix.
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Journal of Applied Statistics 5

Table 1. Matrix I of interval data.

Y1 . . . Yj . . . Yp

s1 [l11, u11] . . . [l1j , u1j ] . . . [l1p, u1p]
. . . . . . . . . . . .
si [li1, ui1] . . . [lij , uij ] . . . [lip, uip]
. . . . . . . . . . . .
sn [ln1, un1] . . . [lnj , unj ] . . . [lnp, unp]

2. Parametric representation of interval data

Given a set of n “individuals” S = {s1, . . . , sn}, an interval variable is defined by an application
Y : S → T such that si → Y (si) = [li , ui], where T is the set of intervals of an underlying set
O ⊆ R. Let I be an n × p matrix representing the values of p interval variables on S. Each si ∈ S

is represented by a p-uple of intervals, Ii = (Ii1, . . . , Iip), i = 1, . . . , n, with Iij = [lij, uij], j =
1, . . . , p (see Table 1). The value of an interval variable Yj for each si ∈ S is hence defined by the
bounds lij and uij of Iij = Yj (si). For modelling purposes, a preferable equivalent parametrization
consists in representing Yj (si) by the midpoint cij = (lij + uij)/2 and range rij = uij − lij of Iij.

In the next sections, we propose a parametric model for interval data, based on this
representation.

3. Normal model

Let us consider each interval Iij represented by its midpoint cij and range rij. In the first model,
we assume that the joint distribution of the midpoints C and the logs of the ranges R is multivari-
ate Normal, i.e., R∗ = ln(R), (C, R∗) ∼ N2p(μ, �), with μ = [μt

C, μt
R∗ ]t and � = (

�CC �CR∗
�R∗C �R∗R∗

)
where μC and μR∗ are p-dimensional column vectors of the mean values of, respectively, the
midpoints and log-ranges, and �CC, �CR∗ , �R∗C and �R∗R∗ are p × p matrices containing their
variances and covariances.

This model has the advantage that it allows for a straightforward application of classical infer-
ence methods. If we consider the intervals’ midpoints as location indicators of the variables’
values, assuming that they follow a joint Normal distribution corresponds to the usual Gaussian
assumption for classical data. By considering the log transformation of the ranges, we overcome
the difficulties created by their limited domain. An obvious implication of this model is that the
marginal distributions of the midpoints are Normals and those of the ranges are Log-Normals. In
Section 4, we consider more general models that try to alleviate some of the known limitations
of the multivariate Normal distribution.

It should be emphasized that the midpoint cij and the range rij of the value of an interval variable
are two quantities related to one only variable, and should therefore not be considered separately.
One contribution of this work is to offer parameterizations of the global covariance matrix that
take into account the link that may exist between midpoints and log-ranges of the same or different
variables. Intermediate parameterizations between the non-restricted and the non-correlation setup
usually considered are particularly relevant for the specific case of interval data.

In the most general formulation, we allow for non-zero correlations among all midpoints and
log-ranges (configuration 1); other cases of interest are:

• Midpoints (respectively, ranges) of different variables may be correlated, the midpoint of each
variable may be correlated with its range, but no correlation between midpoints and ranges of
different variables is allowed (configuration 2);
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6 P. Brito and A.P. Duarte Silva

• The interval variables Yj are independent, but for each variable, the midpoint may be correlated
with its range (configuration 3);

• Midpoints (respectively, ranges) of different variables may be correlated, but no correlation
between midpoints and ranges is allowed (configuration 4);

• All midpoints and ranges are uncorrelated, both among themselves and between each other
(configuration 5).

Table 2 summarizes the different possibilities. We note that in this framework imposing non-
correlations with log-ranges is equivalent to imposing non-correlations with ranges. This follows
from the normality assumption and the well-known equivalence between non-correlation and
independence in the multivariate Normal distribution. Note that configuration 2 is a particular
case of 1 and both 3 and 4 are particular cases of 2, configuration 5 being a particular case of all
the others.

It should be remarked that in cases 3, 4 and 5, � can be written as a diagonal by blocks matrix,
after a possible rearrangement of rows and columns. This is directly the case for configurations 4
and 5; in configuration 3, the rows and columns of � must be rearranged such that the row (resp.
column) corresponding to the midpoint of each variable is immediately followed by the row (resp.
column) corresponding to its range. It then follows that in configuration 4 the matrix � is formed
by two p × p blocks, whereas in configuration 3 there are p 2 × 2 blocks and in configuration 5
the 2p blocks are single real elements.

Testing configurations 3, 4 and 5 against 1 amounts to testing for the independence of sets of
variables. Tests for this problem are well known and may be found, for instance, in [16,17]. In
any case, for this problem, as well as for testing configuration 2 against 1 and configurations 3,
4 and 5 against a more general configuration other than 1, the likelihood ratio principle may be
applied.

3.1 Maximum likelihood estimation

Let Xi = [C t
i , R

∗
i

t]t be the 2p-dimensional column vector comprising all the midpoints and log-
ranges for si . Let X̄ be the sample mean of the Xi’s. The maximum likelihood estimators of μ

and � under configuration 1 are obviously the classical ones, μ̂ = X̄ and �̂ = (1/n)
∑n

i=1(Xi −
X̄)(Xi − X̄)t := (1/n)E. We will now show that the maximum likelihood estimators of μ and �

for configurations 3, 4 and 5 are obtained from the non-restricted estimators simply replacing by
zeros the null parameters in the model for �.

For all configurations, the likelihood function is

L(μ, �) = (2π)−np|�|−n/2 exp

(
−1

2

n∑
i=1

(Xi − μ)t�−1(Xi − μ)

)
(1)

Table 2. Different configurations.

Configuration Characterization �

1 Non-restricted Non-restricted
2 Cj not-correlated with R∗

� , � �= j �CR∗ = �R∗C diagonal
3 Yj ’s non correlated �CC, �CR∗ = �R∗C, �R∗R∗ all diagonal
4 C’s non-correlated with R∗’s �CR∗ = �R∗C = 0
5 All C’s and R∗’s are non-correlated � diagonal
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Journal of Applied Statistics 7

and the log-likelihood can be written as

ln L(μ, �) = −np ln(2π) − n

2
ln |�| − 1

2
tr E�−1 − n

2
(X̄ − μ)t�−1(X̄ − μ). (2)

Since �−1 is symmetric positive definite, the quadratic form term will be a minimum only when
μ is equal to X̄, so that the maximum-likelihood estimate of the mean vector is always X̄, as
usual. Then the maximization of the likelihood function with respect to � reduces to maximizing

ln L(μ, �) = constant − n

2
ln |�| − 1

2
tr E�−1. (3)

In configurations 3, 4 and 5, � is subject to the constraints shown in Table 2. As we have already
seen, in these cases � can be written as a diagonal by blocks matrix, after a possible rearrangement
of rows and columns. Lemma 1 shows that the maximum of ln L(μ, �) in Equation (3) can be
obtained by separately maximizing with respect to each block of �.

Lemma 1 When � is diagonal by blocks

� =

⎛
⎜⎜⎝

�1

�2 0
0 . . .

�q

⎞
⎟⎟⎠ ,

the maximum of the likelihood function (1) is reached when �h = �̂h = Eh/n for h = 1, . . . , q

where Eh is the block of E corresponding to �h.

Proof As shown above, maximizing Equation (1) after replacing μ by X̄ reduces to maximizing
Equation (3) with respect to �. Since in this case |�| = |�1||�2| . . . |�q | and

�−1 =

⎛
⎜⎜⎝

�−1
1

�−1
2 0

0 . . .

�−1
q

⎞
⎟⎟⎠ .

Equation (3) may be written as

ln L(μ, �) = constant −
q∑

h=1

(
n

2
ln |�h| + 1

2
tr Eh�

−1
h

)
. (4)

It is well known (see, for instance [17]) that Equation (4) is maximized when �h = �̂h = Eh/n.
This result is not valid for configuration 2, since in that case � cannot be written as a block

diagonal matrix. As far as we can tell there is no closed form expression for the maximum
likelihood estimator in this case; however Equation (3) can always be maximized by standard
numerical procedures. In particular, in our implementation, we used the “L-BFGS-B” quasi-
Newton algorithm with bounded variables, proposed in [8]. This uses function values and gradients
to build up a picture of the surface to be optimized. The optimization procedure takes as arguments
the elements of μ and the non-null elements of L, where � = LLt denotes the lower-triangular
Cholesky decomposition of �. �
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8 P. Brito and A.P. Duarte Silva

3.2 Application to ANOVA and MANOVA

Different inferential methodologies may be approached by the modelling presented above. For
instance, model-based clustering and statistical tests in regression analysis require a parametric
modelling of the data generating process. Here, we will discuss ANOVA and MANOVA in this
context.

First let us point out that since each interval variable Yj is modelled by the pair (Cj , R
∗
j ), it

follows that an analysis of variance of Yj is now accomplished by a two-dimensional MANOVA
of (Cj , R

∗
j ).

To fix ideas, let us assume a one-way design, where the factor has k levels, representing k groups,
and n� be the number of observations in group �. Let Xij = [Cij, R

∗
ij]t be the two-dimensional

column vector comprising the midpoint and log-range of variable Yj for si . Moreover, let X̄•j�

and μ•j� be sample and population means of the Xij’s in group �, and X̄•j• the corresponding
global sample mean. The null hypothesis in this case consists in stating that all μ•j� are equal
across groups.

We will adopt a likelihood ratio approach since different likelihood ratio statistics may be
derived for each different configuration in Table 2. For alternative statistics, such as the Lawley–
Hotelling trace, the Pillai’s trace and the maximum root statistics (see [17]), it is not clear how a
similar adaptation could be done. In particular, if given entries in the variance–covariance matrix
are set to zero the classical distributions can no longer be guaranteed. These distributions have been
deduced assuming that the corresponding matrices follow Wishart distributions, which implies
that all the matrix entries are random variables. In the situation at hand some of these entries will
be fixed scalars, therefore violating the classical assumptions.

Following the same reasoning as in the previous section, it follows that for configurations 3, 4
and 5, the likelihood ratio statistic is λ = (|Ealt|/|Enull|)n/2 where Enull and Ealt are 2 × 2 matrices
corresponding to the null and alternative hypothesis respectively. Enull is obtained from Ej =∑n

i=1(Xij − X̄•j•)(Xij − X̄•j•)t by replacing the null entries corresponding to each configuration;
likewise, Ealt is obtained from

∑k
�=1

∑n�

i=1(Xij − X̄•j�)(Xij − X̄•j�)
t in the same manner.

Configuration 1 is the classical one, and for configuration 2 the likelihood ratio statistics
may be obtained by numerical methods. In all cases, under the null hypothesis, 2 ln λ follows
asymptotically a chi-square distribution with n − k degrees of freedom.

A simultaneous analysis of all the Y ’s may be accomplished by a 2p-dimensional MANOVA,
following the same procedure.

4. Skew-Normal model

A limitation of the Normal model proposed in the above section is that it imposes a symmetrical
distribution on the midpoints and a specific relation between mean, variance and skewness for the
ranges. A more general model that overcomes these limitations may be obtained by considering
the family of Skew-Normal distributions (see, for instance, [1–4]). This distribution generalizes
the Gaussian distribution by introducing an additional shape parameter, while trying to preserve
some of its mathematical properties.

The univariate standard Skew-Normal distribution has density

f (z; α) = 2φ(z)�(αz), z ∈ R, (5)

where α is the shape parameter and φ and � the density and the distribution function of a N(0, 1)

variable, respectively.
A general Skew-Normal variable may be obtained by the transformation X = ξ + ωZ where

Z is a standard Skew-Normal variable and ξ and ω are location and scale parameters. In this
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Journal of Applied Statistics 9

case, we write X ∼ SN(ξ, ω2, α). The density of a p-dimensional Skew-Normal distribution is
given by

f (y; α, ξ, �) = 2φp(x − ξ ; �)�p(αtω−1(x − ξ)), x ∈ R
p, (6)

where now ξ and α are p-dimensional vectors, � is a symmetric p × p positive-definite matrix,
ω is a diagonal matrix formed by the square-roots of the diagonal elements of � and φp, �p

are, respectively, the density and the distribution function of a p-dimensional standard Gaussian
vector.

The variance–covariance matrix of a p dimensional Skew-Normal distribution is given by
Azzalini [2]

Var(X) = � = � − ωμZμt
Zω, (7)

where μZ is a vector of expected values for standard Skew-Normal variables,

μZ =
√

2

�
δ with δ = ω−1�ω−1α√

(1 + αtω−1�ω−1α)
.

Azzalini and Capitanio [3] have obtained the following expression for the log-likelihood of a
p-dimensional Skew-Normal distribution:

l = constant − 1

2
n ln |�| − n

2
tr(�−1V ) +

∑
i

ζ0(α
tω−1(xi − ξ)), (8)

where V = n−1 ∑
i (xi − ξ)(xi − ξ)t and ζ0(x) = ln(2�(x)). These authors maximize Equation

(8) in two steps. First, they separate the ξ and α arguments from � by specifying a new parameter
η = w−1α. Then, the maximization with respect to � is given by the well-known result �̂ = V .
The maximization with respect to η and ξ is then performed numerically.

As an alternative to the Normal model, introduced in Section 3, we now consider that (C, R∗) fol-
low jointly a 2p-multivariate Skew-Normal distribution. This model encompasses mixed models
with marginal Normal random variables, for which the corresponding α parameter is null.

In the Skew-Normal model, we will again consider, in addition to the unrestricted configuration,
particular cases where midpoints and log-ranges may or may not be correlated among themselves
or with each other. Note, however, that now non-correlation is not equivalent to independence
and non-correlation with log-ranges is not equivalent to non-correlation with ranges. However, in
the context of our models, enforcing null correlations with log-ranges is more natural than with
ranges and seems preferable in terms of mathematical tractability.

In the ANOVA and MANOVA of interval variables based on the likelihood ratio principle,
we need to maximize Equation (8) for the null (mean vectors equal across groups) and the
alternative hypothesis. In this case, the optimal likelihood solution for restricted configurations
in Table 2 may not be obtained by simply replacing corresponding entries in the appropriate
matrices. This is due to the fact that the restrictions now imply nonlinear relations between the
parameters in � and α. Given that � = � − ωμZμt

Zω, a null covariance �(j, j ′) implies that
�(j, j ′) = �(j, j)1/2μZj

�(j ′, j ′)1/2μZj ′ or, equivalently

�(j, j ′) = 0 ⇒ �(j, j ′) = 2

π

1

1 + αtω−1�ω−1α
�t

jω
−1ααtω−1�j ′ (9)

where �j denotes the j th column of matrix �.
Therefore, for configurations 2–5 in Table 2, we impose condition (9) for the null elements of

matrix � in each case. This condition defines a system of nonlinear equations on the �(j, j ′),
which may be solved by standard numerical procedures.
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10 P. Brito and A.P. Duarte Silva

The maximization of the log-likelihood (8) under configurations 2–5 cannot be performed in
two separate steps as in the non-restricted case (configuration 1) since, due to conditions (9), α can
no longer be separated from �. Therefore, we propose to employ a quasi-Newton algorithm, using
as arguments all the elements from ξ and α and the free non-null elements of �. We replicate
the procedure several times from different starting points (to avoid local optima). In order to
implement this algorithm, we need the gradients of the log-likelihood, for which the required
derivatives are given in the appendix.

5. Simulation

To study the behaviour of some of the above proposed tests, a restricted simulation study was
performed. We generated interval data by simulating midpoints and log-ranges from multivariate
Normal and Skew-Normal distributions; for the Skew-Normal distribution the α parameter has
been set so that the univariate skewness coefficient equals 0.75. We have considered in all cases
k = 3 balanced groups, and a full factorial design was employed, with the following factors:

• Number of interval variables: p = 1 and p = 5.
• Sample size: n = 60 = 20 + 20 + 20 (small sample), n = 300 = 100 + 100 + 100, and n =

600 = 200 + 200 + 200 (large sample) elements.
• Group separation:

(i) no separation;
(ii) midpoints well-separated, log-ranges well-separated;

(iii) midpoints well-separated, log-ranges badly-separated;
(iv) midpoints badly separated, log-ranges well-separated;
(v) midpoints badly separated, log-ranges badly separated.

• Data configuration (see Table 2): Normal with configurations 1, 3, 4 and 5, Skew-Normal with
configuration 1.

The reason for not having considered configuration 2 in the Normal model and configura-
tions 2–5 in the Skew-Normal model in the full factorial design was their heavy computational
requirements. However, in the illustations presented below, both models with all configuations
are considered.

“No-separation” corresponds to having the mean values (location parameter in the case of
Skew-Normal distributions) of all variables (both for midpoints and log-ranges) in all groups
equal to 0; in the case of “good-separation” these means are set to 0, 0.25 and 0.5, respectively;
finally, “bad-separation” is defined by having these means equal to 0, 0.1 and 0.2. Variances are
always set to 1.

Correlations have been set as follows. It has been assumed that all interval variables have been
ordered with neighbouring variables having the strongest correlations. Then, for all j , the variable
Xj(q) (with q = 1 for midpoints and q = 2 for log-ranges) were generated according to a factorial
model

Xj(q) = μj(q) + 0.9j/2(β1(q)zmpt + β2(q)zlnr + β4z0) + β3zj + β5zj (q), (10)

where zmpt, zlnr, z0 and zj are independently generated standard Gaussian variables responsible
for the different types of correlations considered and zj (q) are independent standard Gaussian
variables responsible for specific variances.

The loadings associated, respectively, with correlation between midpoints, log-ranges, mid-
points and log-ranges of the same variables and midpoints and log-ranges of different variables,
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when not null by design, have been set to

β1(1) = β2(2) = √
0.6; β1(2) = β2(1) = 0.0; β3 = √

0.8; β4 = √
0.4.

The loading associated with specific variances was set to

β5 =
√

Max{0.1, 1 − β2
1(1) − β2

2(2) − β2
3 − β2

4 }.

Table 3. Summary results for one Interval Variable.

Sample Midpoints Log-Ranges Normal Normal Skew Normal
size p Pop. config. separation separation config. 1 config. 5 config. 1

Normal, configuration 1 results
60 1 Norm 1 None None 0.0700 0.1025 0.2300
60 1 Norm 1 Bad Bad 0.1025 0.1475 0.2400
60 1 Norm 1 Good Bad 0.2700 0.2475 0.4300
60 1 Norm 1 Bad Good 0.3175 0.2425 0.4325
60 1 Norm 1 Good Good 0.2375 0.4225 0.3700
300 1 Norm 1 None None 0.0425 0.0925 0.0550
300 1 Norm 1 Bad Bad 0.2075 0.3300 0.2025
300 1 Norm 1 Good Bad 0.9425 0.7875 0.9375
300 1 Norm 1 Bad Good 0.9375 0.8200 0.9300
300 1 Norm 1 Good Good 0.8675 0.9550 0.8400
600 1 Norm 1 None None 0.0425 0.0850 0.0550
600 1 Norm 1 Bad Bad 0.3450 0.5500 0.3600
600 1 Norm 1 Good Bad 1.0000 0.9825 1.0000
600 1 Norm 1 Bad Good 1.0000 0.9850 1.0000
600 1 Norm 1 Good Good 0.9950 1.0000 0.9875
Normal, configuration 5 results
60 1 Norm 5 None None 0.0425 0.0375 0.2050
60 1 Norm 5 Bad Bad 0.1150 0.1200 0.2775
60 1 Norm 5 Good Bad 0.2825 0.2775 0.4050
60 1 Norm 5 Bad Good 0.2825 0.2825 0.4200
60 1 Norm 5 Good Good 0.4075 0.4200 0.4850
300 1 Norm 5 None None 0.0425 0.0450 0.0825
300 1 Norm 5 Bad Bad 0.3250 0.3250 0.3375
300 1 Norm 5 Good Bad 0.8925 0.8900 0.8700
300 1 Norm 5 Bad Good 0.8700 0.8700 0.8650
300 1 Norm 5 Good Good 0.9850 0.9875 0.9800
600 1 Norm 5 None None 0.0425 0.0450 0.0550
600 1 Norm 5 Bad Bad 0.5650 0.5675 0.6025
600 1 Norm 5 Good Bad 0.9975 0.9975 0.9975
600 1 Norm 5 Bad Good 1.0000 1.0000 1.0000
600 1 Norm 5 Good Good 1.0000 1.0000 1.0000
Skew Normal, configuration 1 results
60 1 SkN 1 None None 0.0475 0.0725 0.1225
60 1 SkN 1 Bad Bad 0.0550 0.0900 0.1925
60 1 SkN 1 Good Bad 0.1375 0.1475 0.3125
60 1 SkN 1 Bad Good 0.1525 0.1575 0.2775
60 1 SkN 1 Good Good 0.1425 0.2550 0.3200
300 1 SkN 1 None None 0.0525 0.0800 0.0325
300 1 SkN 1 Bad Bad 0.0950 0.1850 0.1125
300 1 SkN 1 Good Bad 0.5675 0.4650 0.6075
300 1 SkN 1 Bad Good 0.5325 0.5100 0.5875
300 1 SkN 1 Good Good 0.5525 0.7025 0.7550
600 1 SkN 1 None None 0.0525 0.0775 0.0150
600 1 SkN 1 Bad Bad 0.2325 0.3050 0.2500
600 1 SkN 1 Good Bad 0.8575 0.8225 0.8975
600 1 SkN 1 Bad Good 0.8450 0.7925 0.9275
600 1 SkN 1 Good Good 0.8600 0.9550 0.9825
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12 P. Brito and A.P. Duarte Silva

Table 4. Summary results for five interval variables.

Sample Pop. Midpoints Log-Ranges Normal Normal Normal Normal Skew Normal
size p config. separation separation config. 1 config. 3 config. 4 config. 5 config. 1

Normal, configuration 1 results
60 5 Norm 1 None None 0.1275 0.1675 0.1375 0.1150 0.3750
60 5 Norm 1 Bad Bad 0.1550 0.1975 0.1800 0.2175 0.4800
60 5 Norm 1 Good Bad 0.2725 0.3650 0.2650 0.3850 0.4725
60 5 Norm 1 Bad Good 0.2075 0.3975 0.2050 0.3575 0.4800
60 5 Norm 1 Good Good 0.2400 0.4325 0.3125 0.5250 0.5250
300 5 Norm 1 None None 0.0625 0.1175 0.1075 0.1000 0.0650
300 5 Norm 1 Bad Bad 0.1325 0.3525 0.2375 0.4700 0.5675
300 5 Norm 1 Good Bad 0.5650 0.8725 0.6075 0.8900 0.6050
300 5 Norm 1 Bad Good 0.6300 0.9325 0.6175 0.9150 0.5675
300 5 Norm 1 Good Good 0.7150 0.9450 0.8450 0.9825 0.7025
600 5 Norm 1 None None 0.0325 0.1125 0.0800 0.1225 0.0575
600 5 Norm 1 Bad Bad 0.2625 0.5225 0.4100 0.7150 0.8775
600 5 Norm 1 Good Bad 0.9275 0.9975 0.9100 0.9975 0.9150
600 5 Norm 1 Bad Good 0.9325 0.9975 0.9100 0.9975 0.8775
600 5 Norm 1 Good Good 0.9800 1.0000 0.9900 1.0000 0.9750
Normal, configuration 3 results
60 5 Norm 3 None None 0.1200 0.0725 0.1250 0.1175 0.3175
60 5 Norm 3 Bad Bad 0.2175 0.1525 0.2875 0.2650 0.8925
60 5 Norm 3 Good Bad 0.7500 0.7275 0.5950 0.5625 0.8725
60 5 Norm 3 Bad Good 0.7625 0.7550 0.5800 0.5800 0.8925
60 5 Norm 3 Good Good 0.6825 0.6350 0.8400 0.8525 0.7875
300 5 Norm 3 None None 0.0450 0.0275 0.0925 0.0825 0.0925
300 5 Norm 3 Bad Bad 0.4550 0.4425 0.7200 0.7150 1.0000
300 5 Norm 3 Good Bad 1.0000 1.0000 1.0000 1.0000 1.0000
300 5 Norm 3 Bad Good 1.0000 1.0000 1.0000 1.0000 1.0000
300 5 Norm 3 Good Good 1.0000 1.0000 1.0000 1.0000 0.9975
600 5 Norm 3 None None 0.0600 0.0625 0.1050 0.1025 0.1050
600 5 Norm 3 Bad Bad 0.8425 0.8475 0.9625 0.9675 1.0000
600 5 Norm 3 Good Bad 1.0000 1.0000 1.0000 1.0000 1.0000
600 5 Norm 3 Bad Good 1.0000 1.0000 1.0000 1.0000 1.0000
600 5 Norm 3 Good Good 1.0000 1.0000 1.0000 1.0000 1.0000
Normal, configuration 4 results
60 5 Norm 4 None None 0.1250 0.1525 0.1100 0.1475 0.2950
60 5 Norm 4 Bad Bad 0.1400 0.2450 0.1250 0.2450 0.5150
60 5 Norm 4 Good Bad 0.2500 0.5375 0.2125 0.5425 0.4825
60 5 Norm 4 Bad Good 0.2825 0.5375 0.2400 0.5250 0.5150
60 5 Norm 4 Good Good 0.4475 0.7400 0.4025 0.7575 0.6375
300 5 Norm 4 None None 0.0450 0.0950 0.0400 0.0925 0.1200
300 5 Norm 4 Bad Bad 0.2275 0.6200 0.2375 0.6325 0.8875
300 5 Norm 4 Good Bad 0.7950 0.9950 0.8025 0.9950 0.8500
300 5 Norm 4 Bad Good 0.8675 0.9925 0.8575 0.9925 0.8875
300 5 Norm 4 Good Good 0.9900 1.0000 0.9875 1.0000 0.9925
600 5 Norm 4 None None 0.0800 0.1250 0.0775 0.1200 0.0450
600 5 Norm 4 Bad Bad 0.4975 0.8925 0.4825 0.8925 1.0000
600 5 Norm 4 Good Bad 0.9975 1.0000 0.9975 1.0000 0.9975
600 5 Norm 4 Bad Good 0.9925 1.0000 0.9925 1.0000 1.0000
600 5 Norm 4 Good Good 1.0000 1.0000 1.0000 1.0000 1.0000
Normal, configuration 5 results
60 5 Norm 5 None None 0.1325 0.0800 0.1000 0.0850 0.3100
60 5 Norm 5 Bad Bad 0.2900 0.2225 0.2500 0.2250 0.7725
60 5 Norm 5 Good Bad 0.6550 0.6100 0.6175 0.6100 0.7675
60 5 Norm 5 Bad Good 0.6350 0.6000 0.6025 0.6075 0.7725
60 5 Norm 5 Good Good 0.8975 0.8975 0.8725 0.8975 0.9000
300 5 Norm 5 None None 0.0650 0.0650 0.0700 0.0675 0.1075
300 5 Norm 5 Bad Bad 0.7850 0.7775 0.7850 0.7900 1.0000
300 5 Norm 5 Good Bad 1.0000 1.0000 1.0000 1.0000 0.9975

(Continued)
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Table 4. Continued

Sample Pop. Midpoints Log-Ranges Normal Normal Normal Normal Skew Normal
size p config. separation separation config. 1 config. 3 config. 4 config. 5 config. 1

300 5 Norm 5 Bad Good 1.0000 1.0000 1.0000 1.0000 1.0000
300 5 Norm 5 Good Good 1.0000 1.0000 1.0000 1.0000 1.0000
600 5 Norm 5 None None 0.0550 0.0575 0.0550 0.0550 0.0700
600 5 Norm 5 Bad Bad 0.9775 0.9775 0.9800 0.9775 1.0000
600 5 Norm 5 Good Bad 1.0000 1.0000 1.0000 1.0000 1.0000
600 5 Norm 5 Bad Good 1.0000 1.0000 1.0000 1.0000 1.0000
600 5 Norm 5 Good Good 1.0000 1.0000 1.0000 1.0000 1.0000
Skew Normal, Configuration 1 results:
60 5 SkN 1 None None 0.1225 0.1800 0.1525 0.1650 0.2400
60 5 SkN 1 Bad Bad 0.1575 0.2050 0.1900 0.2350 0.3050
60 5 SkN 1 Good Bad 0.2050 0.4025 0.2050 0.3725 0.4325
60 5 SkN 1 Bad Good 0.2325 0.4325 0.2125 0.4150 0.4050
60 5 SkN 1 Good Good 0.2425 0.3700 0.3075 0.5500 0.4250
300 5 SkN 1 None None 0.0575 0.1000 0.1050 0.1300 0.1200
300 5 SkN 1 Bad Bad 0.1525 0.3500 0.2300 0.4275 0.2525
300 5 SkN 1 Good Bad 0.6050 0.9000 0.5900 0.8950 0.7500
300 5 SkN 1 Bad Good 0.6200 0.9000 0.6075 0.9225 0.7400
300 5 SkN 1 Good Good 0.7800 0.9525 0.8750 0.9875 0.8700
600 5 SkN 1 None None 0.0600 0.1375 0.1000 0.1275 0.0200
600 5 SkN 1 Bad Bad 0.2650 0.5625 0.4225 0.7300 0.2900
600 5 SkN 1 Good Bad 0.9425 1.0000 0.9450 0.9975 0.9725
600 5 SkN 1 Bad Good 0.9325 0.9975 0.9275 0.9925 0.9900
600 5 SkN 1 Good Good 0.9875 1.0000 0.9975 1.0000 1.0000

We compared the methods according to the following criteria, based on 400 independent
replications:

• Size of the test: comparing true significance level with a nominal significance level set at
α = 5%.

• Power of the test: frequency of H0 rejections when groups are not identical.

When there is only one interval variable, only configurations 1 and 5 apply.
The results presented in Tables 3 and 4 show the frequency of null-hypothesis rejections across

the 400 replications. In the case of no-separation this percentage is an estimate of the size of the
test; in the remaining cases it is an estimate of its power. The analysis of the simulation results in
Tables 3 and 4 leads to the following conclusions.

For small sample sizes most methods have unacceptably high values for the test size, with the
exception of the method assuming a Normal distribution with configuration 1 when there is only
one interval variable, and the methods assuming a Normal distribution with configurations 3 and
5 when the constraints they assume are true.

For medium and large samples, when the data are Normal, the method assuming a Normal
distribution with configuration 1 is always reasonable in terms of size (with estimated values
varying between 0.0325 and 0.0800) and always better or comparable in terms of power with all
the methods for which the estimated size does not differ from the nominal 0.05 by more than 0.03.

When the data follow a non-restricted Skew-Normal distribution the corresponding method
produces low estimates of size for medium and large samples when there is only one interval
variable and for large samples when there are five interval variables. In all these cases, this
method produces better results in terms of power than all other methods with estimated sizes
below 0.10, with the exception of the method assuming a Normal distribution with configuration
5 when there is only interval variable and both midpoints and log-ranges are badly separated.
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14 P. Brito and A.P. Duarte Silva

6. Applications

6.1 Real data: analysis of China temperatures

In the first application, we study temperatures measured in meteorological stations in northern
China. The analysis is based on data consisting of the intervals of observed temperatures (Celsius
scale) in each of the four quarters, Q1–Q4, of the years 1974–1988 in 22 stations. Table 5 repro-
duces the original data for some stations and years. The full table comprises n = 22 × 15 = 330
rows and 4 columns. The 22 meteorological stations belong to three different regions in China
(North, Northwest, Northeast), which therefore define a partition of the 330 stations-year com-
binations. A MANOVA is performed to assess whether the regions are different as concerns
the observed temperature intervals in the given periods. To control for possible temporal auto-
correlation, the global yearly average temperature was subtracted from the corresponding original
values.

We performed a preliminary analysis to assess deviations from normality using Q–Q plots
and the Kolmogorov–Smirnov goodness-of-fit test. The Q–Q plots did not reveal any strong
deviations from normality although for a few variables and classes normality was rejected by the
Kolmogorov–Smirnov test, what was to be expected, given the relatively large sample sizes.

Likelihood ratio tests were performed to test multivariate normality against the Skew-Normal
distribution for each configuration and the five different considered configurations among them-
selves for each model (see Table 2). The results are shown in Table 6 and reveal that the most
parsimonious models are always rejected against the more general ones, except in the comparision
of configurations 2 and 4 for the Skew-Normal model. Therefore, for this data set, there is strong
evidence in favour of the non-restricted Skew-Normal model. Given the results obtained (Table 6),
the MANOVA analysis should be based on the Skew-Normal model with configuration 1. How-
ever, for the sake of completeness, we have decided to present the results for all models. For all
the models the global MANOVA results (see Table 7) show unambiguously that the three regions
are different. Then separate ANOVA’s for each interval variable were performed. In this case,
only configurations 1 and 5 apply; both were considered for the Normal and the Skew-Normal
models. The analysis shows that regions are distinguishable in terms of each individual interval
variable (see Tables 8–11).

6.2 Illustration: credit card data

In a second application, we used a data set obtained from survey data included as a sample in the
SPSS package (named “customer.dbase”). Among the large set of variables available, we focused
on credit card usage variables: debt to income ratio (×100), credit card debt (in thousands)
and amount spent on primary card last month. Individual observations have been aggregated on
the basis of gender, age category (18–24, 25–34, 35–49, 50–64, more than 65 years old), level
of education (did not complete high school, high-school degree, some college, college degree,
post-undergraduate degree), and designation of primary credit card (none, gold, platinum, other)
leading to 192 groups described by the intervals bounded by the minimum and maximum observed
values on the three credit card usage variables.

Table 5. China temperatures interval data.

Station Region Q1 Q2 Q3 Q4

Beijing-1974 North [−9.5, 10.6] [6.5, 29.8] [12.6, 29.6] [−10.44, 9.06]
Beijing-1975 North [−8.6, 12.9] [7.9, 30.2] [15.0, 31.6] [−7.0, 19.2]
. . . . . . . . . . . . . . . . . .
ZhangYe-1988 Northwest [−15.4, 7.2] [2.3, 26.4] [8.6, 30.2] [−12.0, 15.1]
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Table 6. China temperatures – tests for comparing configurations.

Test 2 ln λ DF P -value

NORM 2–NORM 1 2.992×102 8 < 1 × 10−10

NORM 3–NORM 1 1.754×103 24 < 1 × 10−10

NORM 3–NORM 2 1.45×103 16 < 1 × 10−10

NORM 4–NORM 1 3.217×102 16 < 1 × 10−10

NORM 4–NORM 2 2.25×101 8 0.0040
NORM 5–NORM 1 1.953×103 28 < 1 × 10−10

NORM 5–NORM 2 1.65×103 20 < 1 × 10−10

NORM 5–NORM 3 1.99×103 4 < 1 × 10−10

NORM 5–NORM 4 1.63×103 12 < 1 × 10−10

SkN 2–SkN 1 3.606×102 8 < 1 × 10−10

SkN 3–SkN 1 1.783×103 24 < 1 × 10−10

SkN 3–SkN 2 1.42×103 16 < 1 × 10−10

SkN 4–SkN 1 3.734×102 16 < 1 × 10−10

SkN 4–SkN 2 1.27×101 8 0.1216
SkN 5–SkN 1 1.983×103 28 < 1 × 10−10

SkN 5–SkN 2 1.62×103 20 < 1 × 10−10

SkN 5–SkN 3 2.01×102 4 < 1 × 10−10

SkN 5–SkN 4 1.61×103 12 < 1 × 10−10

SkN 1 - NORM 1 8.273×101 8 < 1 × 10−10

SkN 2–NORM 2 2.126×101 8 0.0065
SkN 3–NORM 3 5.371×101 8 7.865×10−9

SkN 4–NORM 4 3.108×101 8 0.0001
SkN 5–NORM 5 5.246×101 8 1.370×10−8

Table 7. China temperatures – global MANOVA.

Model 2 ln λ DF P -value

NORM 1 480.2475 16 < 1 × 10−10

NORM 2 527.4521 16 < 1 × 10−10

NORM 3 989.9340 16 < 1 × 10−10

NORM 4 529.2541 16 < 1 × 10−10

NORM 5 1057.9210 16 < 1 × 10−10

SkN 1 447.4244 16 < 1 × 10−10

SkN 2 518.1720 16 < 1 × 10−10

SkN 3 974.0240 16 < 1 × 10−10

SkN 4 530.3980 16 < 1 × 10−10

SkN 5 1110.3840 16 < 1 × 10−10

Table 8. China temperatures – ANOVA for the 1st Quarter.

Model 2 ln λ DF P -value

NORM 1 307.9338 4 < 1 × 10−10

NORM 5 350.8622 4 < 1 × 10−10

SkN 1 286.6883 4 < 1 × 10−10

SkN 5 315.4922 4 < 1 × 10−10

The credit card designation defines a partition in four classes of the gender/age-
category/education-level groups. The aim is to investigate whether the three credit card usage
variables differ with designation of card, among the considered groups.
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16 P. Brito and A.P. Duarte Silva

Table 9. China temperatures – ANOVA for the 2nd Quarter.

Model 2 ln λ DF P -value

NORM 1 203.8863 4 < 1 × 10−10

NORM 5 258.7401 4 < 1 × 10−10

SkN 1 198.0769 4 < 1 × 10−10

SkN 5 252.4611 4 < 1 × 10−10

Table 10. China temperatures – ANOVA for the 3rd Quarter.

Model 2 ln λ DF P -value

NORM 1 115.9361 4 < 1 × 10−10

NORM 5 128.0717 4 < 1 × 10−10

SkN 1 115.4760 4 < 1 × 10−10

SkN 5 127.0646 4 < 1 × 10−10

Table 11. China temperatures – ANOVA for the 4th Quarter.

Model 2 ln λ DF P -value

NORM 1 362.1778 4 < 1 × 10−10

NORM 5 320.2474 4 < 1 × 10−10

SkN 1 306.5288 4 < 1 × 10−10

SkN 5 259.8980 4 < 1 × 10−10

Table 12. Credit card data – tests for comparing configurations.

Test 2 ln λ DF P -value

NORM 2–NORM 1 8.481 × 101 8 < 1 × 10−10

NORM 3–NORM 1 1.270 × 102 24 < 1 × 10−10

NORM 3–NORM 2 4.21 × 101 16 0.0004
NORM 4–NORM 1 7.928 × 102 16 < 1 × 10−10

NORM 4–NORM 2 7.08 × 102 8 < 1 × 10−10

NORM 5–NORM 1 9.457 × 102 28 < 1 × 10−10

NORM 5–NORM 2 8.61 × 102 20 < 1 × 10−10

NORM 5–NORM 3 8.19 × 102 4 < 1 × 10−10

NORM 5–NORM 4 1.53 × 102 12 < 1 × 10−10

SkN 2-SkN 1 1.089 × 102 8 < 1 × 10−10

SkN 3–SkN 1 1.309 × 102 24 < 1 × 10−10

SkN 3–SkN 2 2.20 × 101 16 0.1442
SkN 4–SkN 1 9.871 × 102 16 < 1 × 10−10

SkN 4–SkN 2 8.78 × 102 8 < 1 × 10−10

SkN 5–SkN 1 1.141 × 103 28 < 1 × 10−10

SkN 5–SkN 2 1.03 × 103 20 < 1 × 10−10

SkN 5–SkN 3 1.01 × 103 4 < 1 × 10−10

SkN 5–SkN 4 1.54 × 102 12 < 1 × 10−10

SkN 1–NORM 1 2.240 × 102 8 < 1 × 10−10

SkN 2–NORM 2 1.999 × 102 8 < 1 × 10−10

SkN 3–NORM 3 2.201 × 102 8 < 1 × 10−10

SkN 4–NORM 4 2.967 × 101 8 0.0002
SkN 5–NORM 5 2.879 × 101 8 0.0003
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Table 13. Credit card data – Global MANOVA.

Model 2 ln λ DF P -value

NORM 1 15.81713 18 0.605
NORM 2 13.86005 18 0.738
NORM 3 13.92881 18 0.734
NORM 4 18.37095 18 0.431
NORM 5 12.97615 18 0.793
SkN 1 6.52897 18 0.994
SkN 2 10.38462 18 0.919
SkN 3 6.27445 18 0.995
SkN 4 11.42168 18 0.876
SkN 5 11.44587 18 0.874

Again, preliminary analysis did not reveal any strong deviations from normality, although
formal statistical tests did reject normality in some cases.

As in the former example, likelihood ratio tests reveal (see Table 12) that, for this data set, the
more parsimonious models are almost always rejected against the more general ones; the Skew-
Normal model with configuration 1 is again preferred to the alternatives. MANOVA analysis was
performed for all models, results are shown in Table 13. For all the models the global MANOVA
results do not show differences among groups.

7. Conclusions and perspectives

In this paper, a parametric modelling for interval data is proposed. We model the midpoints and
log-ranges of the interval variables by multivariate Normal or Skew-Normal distributions. The
model assumes intrinsic interval data for all variables and cases, i.e., with no degenerate intervals.
Mixed situations where degenerate intervals are allowed require different modellings, that we
leave for further research.

The intrinsic nature of the interval variables naturally leads to special structures of the variance–
covariance matrix, which are represented by five different possible configurations. Maximum
likelihood estimation for the different cases is studied. This estimation relies on closed analytical
expressions in some cases but requires numerical methods in others. To implement these methods
we derive analytical expressions for log-likelihood gradients under constraints. The proposed
modelling is then considered in the context of (M)ANOVA testing.

To assess the behaviour of the proposed methodology, a simulation study is performed. This
shows that, as long as the sample sizes are not too small, tests have good power and their true
significance level approaches nominal levels when the constraints assumed for the model are
respected. Applications to meteorological stations in three different regions, based on observed
data for 15 years, and to credit card data for different card designations, illustrate the proposed
methodology.

Other modellings along the same lines may also be considered. For instance, in [6] models
based on the Gamma distribution were proposed. On the other hand, more general distributions
than the Skew-Normal may be considered, like the Skew-t, or general skew-elliptical distributions
(see [2]).

The framework presented here may now be extended to other statistical methodologies, opening
the way to inference approaches for symbolic data.
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Appendix

In this appendix, we give the derivatives used in the computation of the gradient of the log-
likelihood function for the Skew-Normal model,

l = constant − 1

2
n ln |�| − n

2
tr(�−1V ) +

∑
i

ζ0(α
tω−1(xi − ξ)).

These formulae follow from known results concerning matrix differentiation of quadratic and
bilinear forms (see [13]).

A.1. Derivatives in the non-restricted case (configuration 1)

A.1.1. Derivatives with respect to the location parameters, ξ = (ξ1, . . . , ξ2p)t

∂l

∂ξj

= −1

2
tr[�−1(Mj + M t

j )] −
n∑

i=1

(αj/ωj )φ(αtω−1(xi − ξ))

�(αtω−1(xi − ξ))
,

where Mj is a 2p × 2p matrix with null entries everywhere except for the j th column, which is
equal to

∑n
i=1(ξ − xi).

A.1.2. Derivatives with respect to the skewness parameters, α = (α1, . . . , α2p)t

∂l

∂αj

=
n∑

i=1

φ(αtω−1(xi − ξ))(1/ωj )(xij − ξj ))

�(αtω−1(xi − ξ))
.
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A.1.3. Derivatives with respect to the dispersion parameters, �(j, j), j = 1, . . . , 2p

∂l

∂�(j, j)
= −n

2
�−1(j, j) + n

2
tr(�−1

j �−1
j

t
V ) +

n∑
i=1

2φ(αtω−1(xi − ξ))(αj/ωj )(xij − ξj )

�(αtω−1(xi − ξ))

where �−1
j denotes the j th column of the matrix �−1.

A.1.4. Derivatives with respect to the association parameters, �(j, j ′) j, j ′ = 1, . . . , 2p, j �= j ′

∂l

∂�(j, j ′)
= −n�−1(j, j ′) + n tr(�−1

j �−1
j ′

t
V ).

A.2. Derivatives in the restricted cases (configurations 2–5)

In this case, the derivatives with respect to the skewness, dispersion and free association parameters
are computed using the chain rule and the implicit function theorem, taking into account the
restrictions given by Equation (9); the derivatives with respect to the location parameters remain
unchanged.

The application of the implicit function theorem requires the differentiation of the covariance

�(j, j ′) = gj,j ′(�, α) = �(j, j ′) − 2

π

1

1 + αtω−1�ω−1α
�t

jω
−1ααtω−1�j ′

= �(j, j ′) − 2

π
A−1Bj,j ′ ,

where the scalars A and Bj,j ′ are given by

A = 1 + αtω−1�ω−1α, Bj,j ′ = �t
jω

−1ααtω−1�j ′ .

A.2.1. Covariance derivatives with respect to the skewness parameters, α = (α1, . . . , α2p)t

∂gj,j ′

∂α�

= 2

π

1

ω�

[2A−2αtω−1��Bj,j ′ − A−1αtω−1(�(�, j)�j ′ + (�(�, j ′)�j ).

A.2.2. Covariance derivatives with respect to the dispersion parameters, �(�, �)

� �= j , � �= j ′

∂gj,j ′

∂�(�, �)
= 2

π

α�

ω3
�

[
−A−2αt

(−�)ω
−1
(−�)�(−�)jBj,j ′ + A−1

2
(�(�, j)αtω−1�j ′

+ �(�, j ′)αtω−1�j)

]
,

where αt
(−�) and �(−�)j denote the corresponding vectors without the �th element and likewise

ω−1
(−�) denotes the matrix ω−1 without the �th row and column.

∂gj,j ′

∂�(j, j)
= 2

π

αj

ωj

[
−A−2αt

(−j)�(−j)j

Bj,j ′

ω2
j

− A−1

2
αt

(−j)�(−j)j ′ + A−1

2

�(j, j ′)
ω2

j

αt
(−j)�(−j)j

]
.

D
ow

nl
oa

de
d 

by
 [

K
ni

ho
vn

a 
U

ni
ve

rz
ity

 P
al

ac
ke

ho
] 

at
 0

6:
06

 0
6 

M
ay

 2
01

3 



20 P. Brito and A.P. Duarte Silva

A.2.3. Covariance derivatives with respect to the association parameters, �(�, �′)

(i) �, �′ �= j, j ′:

∂gj,j ′

∂�(�, �′)
= 2

π

α�

ω�

α�′

ω�′
A−2Bj,j ′ .

(ii) � = j , �′ �= j, j ′:

∂gj,j ′

∂�(j, �′)
= 2

π

α�′

ω�′

[
2A−2 αj

ωj

Bj,j ′ − A−1αtω−1�j ′

]
.

(iii) � = j , �′ = j ′, j �= j ′:

∂gj,j ′

∂�(j, j ′)
= 1 + 2

π

[
2A−2 αj

ωj

α′
j

ω′
j

Bj,j ′ − A−1 αj

ωj

αtω−1�j − α′
j

ω′
j

αtω−1�j ′

]
.
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