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Clustering interval-valued and distributional data

−→ Necessary to define, or adapt, clustering methods

Two groups of methods :

a) Methods based on Dissimilarities:
adapting classical clustering methods to the new kind
of data

b) Conceptual clustering methods:
use the data explicitly in the clustering process,
classes usually described by necessary and sufficient
conditions based on Generalization procedures
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Clustering interval and distributional data

Type a) : require appropriate dissimilarity measures

Many measures proposed in the litterature

Interval-valued data:

Minkowski-type distances
Malahanobis distance
Hausdorff distance

Distribution-valued data

Wasserstein distance
Mallows distance
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Clustering interval-valued data

K -means-like approaches - De Carvalho and co-workers (2004 - ...)

Different distances considered
Also: Adaptive distances
Also: Multiple dissimilarity matrices
Using Hausdorff distance - Chavent & Lechevalllier (2002)

Fuzzy clustering

El-Sonbaty, Ismail (1998)
Yang, Hwang and Chen (2004)
D’Urso and Giordani (2006)
De Carvalho et al (2007, 2010)
Jeng, Chuang, Tseng and Juan (2010)

SOM approaches:

Bock et al (2002)
De Carvalho et al (2011)
Hajjar and Hamdan (2011)
Yang, Hung, Chen (2012)
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Interval-valued variables: Distance measures

Many measures proposed in the litterature

Hausdorff distance :
dH(Ii , Ij) = max {{|li − lj | , |ui − uj |}

Euclidean distance :
d2(Ii , Ij) =

√
(li − lj)2 + (ui − uj)2

City-Block distance :
d1(Ii , Ij) = |li − lj |+ |ui − uj | .

Malahanobis distance:
defined on the basis of the vectors of observed lower XiL = (li1, . . . , lip) and
upper bounds XiU = (ui1, . . . , uip).
d(si1 , si2 ) = dM(Xi1L,Xi2L) + dM(Xi1U ,Xi2U) where
dM(Xi1L,Xi2L) = (Xi1L − Xi2L)tML(Xi1L − Xi2L) is the Mahalanobis distance
between the two vectors Xi1L and Xi2L

dM(Xi1U ,Xi2U) = (Xi1U − Xi2U)tMU(Xi1U − Xi2U)
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Clustering distributional data

Hardy (2004, 2008) developped SHICLUST

extends single and complete linkage, centroid and Ward
methods to categorical modal variables
dissimilarity measures and aggregation indices adapted or
suitably chosen

Verde and Irpino (2006, 2007, 2008)

used the Mallows distance for clustering histogram-valued data
rewrote it using the centre and half-range of the subintervals
both hierarchical and dynamical clustering approaches

Korenjak-Cerne et al (2011)

two clustering methods for data with discrete distributions
the adapted leaders method and the adapted Ward’s method
descriptions with distributions allow combining two separate
data sets into a single one
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Histogram-valued variables: Distance measures

Many measures proposed in the litterature
(see e.g. Bock and Diday (2000), Gibbs, (2002))

Divergency measures

Kullback-Leibler DKL(f , g) =

∫
R
log

(
f (x)

g(x)

)
f (x)dx

Jeffrey DJ(f , g) = DKL(f , g) + DKL(g , f )

χ2 Dχ2 (f , g) =

∫
R

|f (x)− g(x)|2

g(x)
dx

Hellinger DH(f , g) =

[∫
R

(√
f (x)−

√
g(x)

)
dx

] 1
2

Total variation Dvar (f , g) =

∫
R
|f (x)− g(x)|dx

Wasserstein DW (f , g) =

∫
R
|F−1(x)− G−1(x)|dx

Mallows DM(f , g) =

√∫ 1

0
(F−1(x)− G−1(x))2 dx

Kolmogorov DW (f , g) = max
R
|F (x)− G(x)|
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DIV: Divisive Clustering (Chavent (1998, 2000) ; Brito,
Chavent (2012)

Divisive clustering method

For symbolic data

Taking internal variability into account

Monothetic clusters

In SODAS: Interval and Categorical modal variables (not
mixed)

More recently: Method for Interval and Histogram-valued
variables

Where : Interval-valued variables: a special case of
histogram-valued variables
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Divisive Clustering

Divisive clustering algorithms proceed top-down

Starting with S , the set to be clustered

Performing a bipartition of one cluster at each step

At step m a partition of S in m clusters is present

One will be further divided in two sub-clusters

The cluster to be divided and the splitting rule chosen to
obtain a partition in m + 1 clusters minimizing intra-cluster
dispersion
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The criterion

“Quality” of a partition Pm =
{
C

(m)
1 ,C

(m)
2 , . . . ,C

(m)
m

}
measured

by the sum of intra-cluster dispersion for each cluster :

Q(m) =
K∑
α=1

I (Cα) =
K∑
α=1

∑
si ,si′∈C

(m)
α

D2(si , si ′)

D2(si , si ′) =

p∑
j=1

d2(xij , xi ′j)

d : quadratic distance between distributions

At each step :
one cluster is chosen to be split in two sub-clusters
Q(m + 1) is minimized (Q(m)− Q(m + 1) maximized)
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Distance measures: Interval data in SODAS

Hausdorff distance

The Hausdorff distance between two sets is the maximum distance
of a set to the nearest point in the other set
Two sets are close if every point of either set is close to some point
of the other set

Hausdorff distance between two intervals I1 = [l1, u1], I2 = [l2, u2] :

dH(I1, I2) = max{|l1 − l2|, |u1 − u2|}

For multivariate interval-valued observations these may be
combined, often in an “Euclidean” way:

dH2(si1 , si2) =

√√√√ p∑
j=1

(max{|li1j − li2j |, |ui1j − ui2j |})2
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Distance measures: Categorical modal data in SODAS

The symbolic data array is transformed in a frequency matrix

X = (fkj)nt with t = total number of categories

Let pkj =
fkj
np

χ2distance :

d(sk , s`) =
t∑

j=1

p..
p.j

(
pkj
pk.
−

p`j
p`.

)2
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Distance measures: New approach

Evaluate the dissimilarity between distributions

Yj(Si ) = HYj (Si ) = ([I ij1, I ij1[, pij1; . . . ; [I ijKj
, I ijKj

], pijKj
)

1 Mallows distance

d2
M(xij , xi ′j) =

∫ 1

0
(qij(t)− qi ′j(t))2dt

qij : quantile function corresponding to distribution Yj(Si )

2 Squared Euclidean distance

d2
E (xij , xi ′j) =

Kj∑
`=1

(pij` − pi ′j`)
2
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Binary questions

Bipartition to be performed at each step
defined by one single variable considering conditions of the type :

Numerical data :
Rj` := Yj ∈ R1j ⇔ Yj ≤ m`, j = 1, . . . , p

Categorical data :
Rj` := Yj ∈ R1j

Rj` → bipartition of a cluster :

sub-cluster 1 : elements who verify condition Rj` :Yj ∈ R1j

sub-cluster 2 : those who do not :Yj /∈ R1j
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Bi-partitions and Assignement

Interval variables in SODAS:
m` - defining the “cuts” are the midpoints between the centres
of the observed intervals
Test made with the observed centres

Categorical modal variables in SODAS
Cuts defined by all bi-partitions of the set of categories:
Rj` : sum of category weights in Yj(si ) ≥ 0.5

New approach for distributional variables:
m` - defining the “cuts” are the I j`
Rj` : Yj ≤ I j` iff

∑`
α=1 pijα ≥ 0.5

The sequence of conditions :
necessary and sufficient condition for cluster membership

The obtained clustering is monothetic :
each cluster is represented by a conjunction of properties in the
descriptive variables
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Binary questions and assignement: example

Age Marks
Class 1 ([10, 11[, 0.50; ([5, 10[, 0.2; [10, 12[, 0.5; [12, 14[, 0.133;

[11, 12[, 0.50; [14, 15[, 0.067; [15, 16[, 0.033;
[12, 14], 0.00) [16, 18[, 0.067; [18, 19], 0.0)

Class 2 ([10, 11[, 0.00; ([5, 10[, 0.05; [10, 12[, 0.3; [12, 14[, 0.25;
[11, 12[, 0.33; [14, 15[, 0.1; [15, 16[, 0.1;
[12, 14], 0.67) [16, 18[, 0.133; [18, 19], 0.067)

First step - binary questions :

Age ≤ 11, Age ≤ 12
Marks ≤ 10, Marks ≤ 12, Marks ≤ 14, Marks ≤ 15, Marks ≤ 16,
Marks ≤ 18

If condition Age ≤ 12 is selected :
sub-cluster 1 contains Class 1 and is described by “Age ≤ 12”
sub-cluster 2 contains Class 2 and is described by “Age > 12”
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Algorithm

Initialization : P1 = {C (1)
1 ≡ S}

Pm = {C (m)
1 , . . . ,C

(m)
m } : current partition at step m

Determine the cluster C
(m)
M and the binary question Rj` := Yj(si ) ∈ R1j :

new partition Pm+1 = {C (m+1)
1 , . . . ,C

(m+1)
m+1 } minimizes

Q(m) =
m∑
`=1

∑
si ,si′∈C

(m)
`

D2(si , si′)

among partitions in m + 1 clusters obtained by splitting a cluster of Pm in
two clusters

Minimize Q(m) : equivalent to maximize

∆Q = I (C
(m)
M )− (I (C

(m+1)
1 ) + I (C

(m+1)
2 ))

Fixed number of clusters K is attained
or P has n clusters, each with a single element (step n):
algorithm stops
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Divisive Clustering: Application

Price and Engine Displacement (cm3) of utilitarian cars’ models

Price Engine Displacement

Model 1 ([15, 25[, 0.5; [25, 35[, 0.5); ([1300, 1500[, 0.2; [1500, 1700[, 0.5;
[1700, 1900[, 0.3)

Model 2 ([15, 25[, 0.2; [25, 35[, 0.8); ([1300, 1500[, 0.1; [1500, 1700[, 0.2;
[1700, 1900[, 0.7)

Model 3 ([15, 25[, 0, 33; [25, 35[, 0.67) ([1300, 1500[, 0.1; [1500, 1700[, 0.4;
[1700, 1900[, 0.5)

Model 4 ([15, 25[, 0.6; [25, 35[, 0.4) ([1300, 1500[, 0.6; [1500, 1700[, 0.4;
[1700, 1900[, 0.0)

Partition into three clusters

Squared Euclidean distance between distributions to compare
the observed values for each car model
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Divisive clustering application: the clustering tree

Cluster C
(3)
1 = {Model 4} : “Price ≤ 25 ∧ Engine Displacement ≤ 1500”

Cluster C
(3)
2 = {Model 1} : “Price ≤ 25 ∧ Engine Displacement > 1500”

Cluster C
(3)
3 = {Model 2, Model 3} : “Price > 25”
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Car example: the dendrogram
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Application: Social and crime data in USA states

Data gathered for 2216 USA cities, aggregated by state - 22
states retained

14 numerical variables - distributions represented by
histogram-valued variables

Partition into six clusters

Mallows distance between distributions for each state
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Crime-data application: the variables

CRIMES

murdPerPop: number of murders per 100K population

robbbPerPop: number of robberies per 100K population

assaultPerPop: number of assaults per 100K population

burglPerPop: number of burglaries per 100K population

larcPerPop: number of larcenies per 100K population

autoTheftPerPop: number of auto thefts per 100K population

arsonsPerPop: number of arsons per 100K population

SOCIAL

perCapInc: per capita income

PctPopUnderPov: percentage of people under the poverty level

PersPerOccupHous: mean persons per household

PctKids2Par: percentage of kids in family housing with two parents

PctVacantBoarded: percent of vacant housing that is boarded up

NumKindsDrugsSeiz: number of different kinds of drugs seized

LemasTotReqPerPop: total requests for police per 100K popuation
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Crime-data application: the dendrogram
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Hierachical/PyramidalConceptual clustering method (Brito
(1991, 1995))

Ascending hierarchical / pyramidal clutering
Each cluster formed is associated with a conjunction of
properties in the input variables
Cluster = Concept : (extent, description)
When two given clusters are merged

Set-valued and Interval-valued variables:
Generalization is performed by union, e.g. :
[0, 15[∪[10, 30[= [0, 30[
Distribution-valued variables : Generalization is performed by either
considering the maximum or the minimum of the
probability/frequency values for each category , e.g.
([0, 15[, 0, 5; [15, 30[, 0, 5) ∪max ([0, 15[, 0, 2; [15, 30[, 0, 8) =
([0, 15[, 0, 5; [15, 30[, 0, 8)

Only clusters corresponding to concepts are formed :
the cluster elements and only them must all meet the given
conditions : Int(C ) = d and ExtS(d) = CP. Brito ECI - Buenos Aires - July 2015
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Conceptual clustering method: Generality degree

Numerical criterion : measures the Generality of a description

Clusters associated with less general descriptions should be
formed first

Set-valued and Interval-valued variables: evaluates the
proportion of the description space covered

Distribution-valued variables: evaluates the affinity between
the given distribution and the Uniform

Computed variable-wise; values combined in a multiplicative
way give a measure of the variability of the description

Extended to constrained data (rules between variables) with
De Carvalho (1999, 2002)
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Conceptual clustering method: Generality degree

Interval-valued variables: G (di ) =
∏p

j=1

(Iij−Iij )
L(Oj )

L(Oj): total length of Oj

Set-valued variables: G (di ) =
∏p

j=1
#Vij

#Oj

Distribution-valued variables: evaluates the affinity between the
given distribution and the Uniform
pij` : weight of category ` of variable j for entity i

Generalization by the maximum:

G1(di ) :=
∏p

j=1
1√
kj

∑kj
`=1
√
pij`

Generalization by the minimum :

G2(di ) :=
∏p

j=1
1√

kj (kj−1)

∑kj
`=1

√
(1− pij`)
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Conceptual clustering: the algorithm

Starting with the one-object clusters {si} , i = 1, . . . , n

At each step, form a cluster C union of C1,C2

C represented by d
Such that :

C1,C2 can be merged together
d is more general than d1, d2 (obtained by Generalization)
Int(C ) = d and ExtS(d) = C : (C , d) is a concept
G (d) is minimum
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Conceptual clustering: recent approach

Polaillon & Brito (2011) : common framework for numerical
(real or interval-valued), ordinal and distribution-valued
variables → generalization operator determines intents by

intervals of values

Variables of different types be taken together into account

Distribution data: concepts more homogeneous than those
obtained with the maximum or minimum operators, e.g.
([0, 15[, 0, 5; [15, 30[, 0, 5) ∪int ([0, 15[, 0, 2; [15, 30[, 0, 8) =
([0, 15[([0, 2, 0, 5]); [15, 30[, ([0, 5, 0, 8])

Approach applied to hierarchical (or pyramidal) clustering
(Brito and Polaillon (2012))

Updapting the “generality degree” - now additive on the
variables: average variability
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Generalization by Intervals

Real and Interval-Valued variables

Yj : S → I ,Yj(si ) = [lij , uij ] ; I : set of intervals of IR

Generalization by interval union:

Intent of a st A :

d = (I1, . . . , Ip), Ij = [Min{lij},Max{uij}], si ∈ A ⊆ S
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Generalization by Intervals: example

Variables : Age, Salary during the 5 recent years

Age Salary

s1 30 [1000, 3000]
s2 37 [1200, 3500]
s3 28 [1500, 4000]
s4 40 [2000, 3200]

A = {s1, s2, s3}
Intent : d = ([28, 37] , [1000, 4000])

Extent = {s1, s2, s3}

=⇒ C = ({s1, s2, s3}, ([28, 37] , [1000, 4000]) is a concept
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Generalization by Intervals

Distributional variables

Y1, . . . ,Yp: p distributional variables

Oj =
{
cj1, . . . , cjkj

}
set of kj possible categories or sub-intervals of

variable Yj

Mj : set of distributions on Oj ; M = M1 × . . .×Mp

Yj(si ) =
{
cj1(psij1), . . . , cjkj (p

si
jkj

)
}

psijk` : probability/frequency associated with cj` of Yj and si
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Generalization by Intervals

A = {s1, . . . , sh} ⊆ S

Intent :

dj = {cj1(Ij1), . . . , cjkj (Ijkj )}

Ij` =
[
Min{psij`},Max{psij`}

]
, si ∈ A

Extent :

{si ∈ S : psij` ∈ Ij`}
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Generalization by Intervals: example

Categorical modal variables
Groups of students for each of which a categorical mark is given:
a: mark < 10, b: mark between 10 and 15, c: mark > 15 :

Mark
Group 1 (G1) < 10(0.2), [10− 15] (0.6), > 15(0.2)
Group 2 (G2) < 10(0.3), [10− 15] (0.3), > 15(0.4)
Group 3 (G3) < 10(0.1), [10− 15] (0.6), > 15(0.3)
Group 4 (G4) < 10(0.3), [10− 15] (0.6), > 15(0.1)

Generalization by intervals of A = {G1,G2} provides the intent

Intent : d = {a [0.2, 0.3] , b [0.3, 0.6] , c [0.2, 0.4]}
The extent is {G1,G2}

C = ({G1,G2}, (a [0.2, 0.3] , b [0.3, 0.6] , c [0.2, 0.4])) is a concept
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Generalization by Intervals: example

Ordinal variables
Four cinema critics evaluate three movies:

Movie 1 Movie 2 Movie 3
Critic 1 5 5 4
Critic 2 5 4 4
Critic 3 1 2 2
Critic 4 2 1 1

Intent of (Critic1,Critic2)=([5, 5] , [4, 5] , [4, 4])

Extent = {Critic1,Critic2}

Intent of (Critic3,Critic4 )= ([1, 2] , [1, 2] , [1, 2])

Extent = {Critic3,Critic4}
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Generalization by Intervals: mixed example

Persons described by
Age - real-valued variable
Time (in minutes) they take to go to work - interval-valued variable
Means of transportation used - categorical modal variable
Classifications given to three newspapers, A, B and C - ordinal
variables

Age Time Transport A B C
Albert 25 [15, 20] car (0.2) bus (0.8)) 4 2 5
Bellinda 40 [25, 30] car (0.7), bus (0.2), train (0.1)) 2 4 3
Christine 32 [10, 15] car (0.2), bus (0.7), train (0.1)) 5 1 4
David 58 [30, 45] car (0.9), bus (0.1)) 2 4 1

Intent of A = {Albert, Christine} is

V = ([25, 32] , [10, 20] , ([0.2, 0.2] , [0.7, 0.8] , [0.0, 0.1]) , [4, 5] , [1, 2] , [4, 5])

(A,V ) is a concept
P. Brito ECI - Buenos Aires - July 2015
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Generality Measure

Measuring Generality

Previously :

Set-valued variables :
proportion of the description space covered by d

Distributional variables :
affinity between the given distribution and the Uniform (Brito
and De Carvalho (2008))

Now:

Measuring generality of a description d ,G (d) in a common manner
for numerical (real and interval-valued) , ordinal and distributional
variables
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Generality Measure

Measuring Generality

Generality of a description d = (d1, . . . , dp) is evaluated
variable by variable

For variable Yj a value G (dj) ∈ [0, 1] is computed - measures
proportion of description space Oj couvered by dj

The generality of a description is the arithmetic mean of the
variable-wise values :

G (d) =
1

p

p∑
j=1

G (dj)
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Generality Measure

Measuring Generality

G (dj) depends on the type of variable:

measure of the set covered by dj
increasing as relates to inclusion

Numerical variables : Yj : S → [L,U] dj = [lj , uj ]

G (dj) =
uj − lj
U − L

Analogously for ordinal variables

Distributional variables : Yj : S → Mj

dj = {cj1(Ij1), . . . , cjkj (Ijkj )}, Ij` =
[
Ij`, Ij`

]
G (dj) =

1

kj

kj∑
`=1

(Ij` − Ij`)
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Generality Measure

Measuring Generality: Example

Two groups G1,G2 described by
Y1 : age group, categorical modal variable Y2: salary,
interval-valued variable, Y2 : S → [0, 10]

G1 : (a(0.2), b(0.6), c(0.2), [2, 5])

G2 : (a(0.3), b(0.3), c(0.4)), [1, 2.5])

The joint description of the 2 groups is :
d = (a [0.2, 0.3] , b [0.3, 0.6] , c [0.2, 0.4], [1, 5])

G (d1) = 1
3 ((0.3− 0.2) + (0.6− 0.3) + (0.4− 0.2)) = 0.2

G (d2) = 5−1
10−0 = 0.4

G (d) = 1
2 (0.2 + 0.4) = 0.3
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Generality Measure

Conceptual clustering: Application

Age distribution and salary range of several groups

Five groups described by:
Y1 = Age class, a: age < 25 , b: age ∈ [25, 60] , c: age > 60
Y2 = Salary, Y2 : E → [0, 10]

Group Age Salary

G1 a(0.2), b(0.6), c(0.2) [2, 5]

G2 a(0.3), b(0.3), c(0.4) [1, 2.5]

G3 a(0.1), b(0.6), c(0.3) [3, 6]

G4 a(0.3), b(0.6), c(0.1) [4, 8]

G5 a(0.5), b(0.3), c(0.2) [1.5, 3]
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Generality Measure

Application: the conceptual indexed hierarchy

 

The concepts are :
C (6) = {G2,G5} ; d(6) = ({a([0.3, 0.5]), b([0.3, 0.3]), c([0.2, 0.4])}, [1, 3]) ;
G(d (6)) = 0.17

C (7) = {G1,G3} ; d(7) = ({a([0.1, 0.2]), b([0.6, 0.6]), c([0.2, 0.3])}, [2, 6]) ;
G(d (7)) = 0.23

C (8) = {G1,G3,G4} ; d(8) = (a([0.1, 0.2]), b([0.5, 0.6]), c([0.1, 0.3]), [2, 8]) ;
G(d (8)) = 0.4

C (9) = {G1,G2,G3,G4,G5} ;
d(9) = ({a([0.1, 0.5]), b([0.3, 0.6]), c([0.1, 0.4])}, [1, 8]) ; G(d (9)) = 0.5
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Outline

1 Clustering approaches

2 Divisive Clustering
The criterion
The distances
Binary questions and Assignement
The algorithm

3 Hierachical and pyramidal (conceptual) clustering
Generality Measure

4 Non-Hierachical clustering

P. Brito ECI - Buenos Aires - July 2015



Clustering approaches
Divisive Clustering

Hierachical and pyramidal (conceptual) clustering
Non-Hierachical clustering

SCLUST: Dynamical clustering for symbolic data (De
Carvalho et al. (2008))

SCLUST : non-hierarchical clustering on symbolic data, using a
k-means - or dynamical clustering - like method

Starting from a partition on a pre-fixed number of clusters

alternates an assignment step (based on minimum distance to
cluster prototypes)

and a representation step (which determines new protoypes in
each cluster)

until convergence is achieved (or a pre-fixed number of
iterations is reached)
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SCLUST: Dynamical clustering for symbolic data

Define D(A, c) =
∑
s∈A

d(s, c)
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SCLUST: Dynamical clustering for symbolic data

In each step :

Decrease of the value of a criterion that evaluates the distance of
each element si to the center of its class P`

−→ evaluates the fit between the classes P` and their
representants c`

W =
k∑
`=1

∑
s∈P`

d(s, c`)

From the consistency between functions f and g , and the
assurance of the existance and unicity of the centers determined by
g , it follows that W decreases in each step, converging to a local
optimum.
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SCLUST: Dynamical clustering for symbolic data

The method locally optimizes a criterion that measures the fit
between cluster propotypes and cluster members

which is additive, and based on the assignment-distance
function

The method allows for all types of variables in the input data
Selects the distances for the assigning step accordingly:

Quantitative real-valued data: Euclidean distance
Interval and quantitative multi-valued data: Hausdorff distance
Categorical single-valued data: χ-square distance
Categorical multi-valued data: De Carvalho distance
Distributional data: a classical φ2 distance

SCLUST includes functions for the determination of the
appropriate number of clusters, based on classical indices
(see Hardy, (2008))
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