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Linear Regression for interval-valued variables

State-of-the-art

- MIETHODS BASED IN SYMBOLIC COVARIANCE DEFINITIONS (Billard and Diday, 2000;2006; Xu,
2010)

- MINMAX METHOD (Billard and Diday, 2002)
- CENTER AND RANGE METHOD (Lima Neto and De Carvalho,2008)

- CENTER AND RANGE LEAST ABSOLUTE DEVIATION REGRESSION METHOD (Maia and
Carvalho, 2008)

- CONSTRAINED CENTER AND RANGE METHOD (Lima Neto and De Carvalho, 2010)
- LAssO IR METHOD (Giordani, 2014)
- BIVARIANTE SYMBOLIC REGRESSION MODELS (Lima Neto et a/,2011)

-LINEAR REGRESSION MODELS FOR SYMBOLIC INTERVAL DATA USING PSO ALGORITHM (Yang
etal,2011)

- MONTE CARLO METHOD (Ahn et al,2012)
- RADIAL BASIS FUNCTION NETWORKS (Su et al, 2012)
- COPULA INTERVAL REGRESSION METHOD (Neto et al, 2012)

- INTERVAL DISTRIBUTIONAL MODEL (Dias and Brito, in study)



Linear Regression for interval-valued variables

Introduction

For each observation j the interval observations Y; may be represented in different ways:

INTERVALS
- defined from the bounds Y, = [[Y jyj] with 1, < ()

- defined from the centers and half-ranges {y(;) = [ Sy TGy Cro) TG )] where

)i 1 Ivih =10
UORESTD) center of the interval; _ 0 T4

Cri) = 5 () = 5 G > () half range of the interval

PARAMETERIZATION OF THE INTERVALS/ QUANTILE FUNCTONS

Assuming the Uniform distribution within the intervals:

* defined from the bounds ¥ Y, )(z‘) =1, +(fym —lm))t, 0<r<l1

*defined from the centers and half-ranges LIJ;IU) (t) =c, (2t 1) 0<t<l1



Linear Regression for interval-valued variables

Introduction

Representations of the intervals

function

___Non-decreasing

1 L | 1 1 I | 1
0.1 02 03 04 0.5 0.6 0.7 0.8 0.9

Iy :[1’4]

¥ (1)=1+3t, te[0,1]

X

1

In an interval [!Y,fy} we have always I, <Iy . Consequently, the quantile function that

represent the interval is a non decreasing function with domain [0,1].




Linear Regression for interval-valued variables

The Center Method (CM)

Billard and Diday, 2000. Regression analysis for interval-valued data. Proceedings of IFCS’00, pp.369-374. Springer.

Linear regression relation: ¢, =b, +bc, ,+...+b,c, y+e ()

— p p —
Prediction of the intervals: Iy = [gf(j),l?(j)} with I, = min{bo +D b Ly (b, +Zbk]Xk(j)}
k=1 k=1

— p P —
i) = max{bo +Zblek(j)’b0 +Zbk]Xk(j)}
k=1 k=1
= The coefficients of the model are estimated by applying the classical model to the mid-point of the
intervals;
= Estimates separately the bounds of the interval;

= To write the estimated interval we have to consider the lower value for the lower bound and higher
for the upper bound of the interval;

" The estimation of the parameters may be obtained by an adaptation of the solution obtained by
the Least Square estimation method for the classical linear model, where symbolic definitions of
variance and covariance are used;

= Descriptive linear regression model;

= Available in R Package: iRegression 1.2. 7




Linear Regression for interval-valued variables

Min Max Method (MinMax)

Billard and Diday, 2002. Symbolic regression analysis. Proceedings of IFCS'02, pp.281-288. Springer.

L L L
e

]Yj)_b +bU]X1(] +. +b ]X(J)+ (])

Linear regression relation : { Y

Prediction of the intervals: Iy = [IY(),IYU)] with [y, = mzn{bLJerL Lyi)by +Zb ka(,)}

_ )4 )4 _
Iy = max{bOL +Zb,f[Xk(j),bé] +Zb,glxk(j)}
k=1 k=1

= Requires the adjustment of two linear regression models, for the lower and upper bounds of
the interval;

* The coefficients of the model are estimated by applying the classical model to the lower and
upper bounds of the interval;

* The estimated value for the upper bound of the interval may be smaller than the lower. This
can happen if there are negative coefficients in the model,;

= Descriptive linear regression model;

= Available in R Package: iRegression 1.2. 8




Linear Regression for interval-valued variables

The Center and Range Method (CRM)

Lima Neto and de Carvalho, 2008. Center and Range method for fitting a linear regression model to symbolic interval
data. Computational Statistics & Data Analysis 52 (3), 1500-1515.

Linear regression relation : v T bo +b “x.()) +”’+bPCXp(J) te (])
oy =D +0ry ) +...+bl’;rXp(j) +e ()

Prediction of the intervals: Iy = [[f(j),lf(j)] with [y = mz‘n{c?(j) ~ Ty %) +rf(j)}
i = max{cf(j) BEIGRRT) +r?(f)}

= Requires the adjustment of two linear regression models, for the mid-point and half range of
the interval;

= The coefficients of the model are estimated by applying the classical model to the mid-point
and half range of the interval;

= The estimated value for the range of the interval may be negative. This can happen if there
are negative coefficients in the model that estimates the half range;

= Descriptive linear regression model;

= Available in R Package: iRegression 1.2.




Linear Regression for interval-valued variables

The Constrained Centre and Range Method (CCRM)

Lima Neto and de Carvalho, 2010. Constrained linear regression models for symbolic interval-valued variables.
Computational Statistics & Data Analysis 54 (2), 333-347.

Linear regression relation : ,
Tyy = Do ¥ 0Ty () T H D ) Fe (/)

with b, 20

Prediction of the intervals: l?(j) = [cm) ) S +rf’(j):|

= The mid-points and half ranges of the intervals are estimated independently;

= The coefficients of the centers model are estimated by applying the classical model to the

mid-points of the intervals;
= The coefficients of the half ranges model are estimated using the Lawson and Hanson’s

algorithm (Lawson and Hanson, 1995).

= Because of the restriction imposed, the linear relation between the half range of the intervals
has to be always positive;

= Descriptive linear regression model;

= Available in R Package: iRegression 1.2.

10




Linear Regression for interval-valued variables

Bivariate Symbolic Method

Lima Neto, Cordeiro, De Carvalho, 2011. Bivariate symbolic regression models for interval-valued variables. Journal of
Statistical Computation and Simulation 81 (11), 1727-1744.

Interval-valued variables: ¥ =(Y,.Y,) and X, =(X,.X,,)

*defined as bivariate quantitative vectors composed by two one-dimensional variables;

*the components are quantitative classical variables that may be represented by the bounds
(lower and upper) or the center and half range;

*the response interval-valued variable Y has a random nature.

Linear regression relation

Adaptation to interval-valued variables of the Bivariate Generalized Linear Model.

"It is assumed that the components of the bivariate vectors follow a bivariate exponential
family;

|t is possible to guarantee the non negativity for the predicted values of the half ranges;
=Probabilistic linear regression model. Inference techniques can be considered.
=Information about the variability within the intervals is not taken into account.

= Available in R Package: iRegression 1.2. "




Linear Regression for interval-valued variables

Interval Distributional Model (ID)

Dias, 2014. Linear regression with empirical distributions. Ph.D thesis, Chapter 5. Universidade do Porto, Portugal.

Vi) (W) (@) () (£).95( (1) quantile functions representing the intervals of the

explicative and response interval-valued variables for observation j.

Linear regression relation:

v (O =vra ™ (- B (=0 4era,wy (- ) (1=0)+e(f)

—v 4 (a,~by)e +i (a, +b)ry () (2=1)+e())
k=1 k=1

with a,,b, 20, k=1,...,p velR e 0<¢<I

The error e(j ), for each unitj, is a linear function, but not necessarily a quantile function.

12




Linear Regression for interval-valued variables

Interval Distributional Model (ID)

Dias, 2014. Linear regression with empirical distributions. Ph.D thesis, Chapter 5. Universidade do Porto, Portugal.

"As the model uses quantile functions to represent the intervals, the distributions within them
are considered;

" In the present model, the Uniform distribution is assumed in each observed interval, however
other distributions may be considered;

® The linear relations between the centers and half ranges induced by the model are different,
although related;

® The non-negative parameters of the model are determined by solving a quadratic optimization
problem, subject to non-negativity constraints. The distance used to quantify the dissimilarity
between predicted and observed quantile functions is the Mallows Distance (Uniform distribution
is assumed) |

2 2
D;, (V/;(lj) () vy, (2 )) = (%) ‘Cf(j)) +§(”y(,-) "’f(f))
" |t is possible to estimate the quantile functions for the response variable directly from the
model;
= A goodness-of-fit measure, Q2 is derived from the model;
=Descriptive linear regression model;

"Information about the variability within the intervals is taken into account. 13




Linear Regression for interval-valued variables

Measure the dissimilarity between intervals

Root Mean Square Errors (Lima Neto and De Carvalho, 2008, 2010)

RMSE, = \/%JZ‘(YY( N-Tr())

RMSE, = \/izm:(b N—-L,())

j=1

Error measure defined with the Mallows Distance, assuming the Uniform
distribution within the intervals (Irpino and Verde, 2015)

RMSE,, = \/%JZ:{(CYU) ~ i) )2 +%(FY(J') o )2}

14



Linear Regression for interval-valued variables

Example: Hematocrit and hemoglobin study

Interval data:
Ranges of the values of hematocrit and

hemoglobin of 16 patients in a hospital.

Variables:

Response variable: Y - hematocrit
Explicative variables: X - hemoglobin

Higher level units: pacients

Goal: Study the ranges of hematocrit
from the ranges of hemoglobin.

[11.54;12.806]

x
<

[33.296; 39.601]

[12.075;14.177]

[36.694; 45.123]

[12.384;16.169]

[36.699; 48.685]

[12.354;15.298]

[36.386; 47.412]

[13.581;16.242]

[39.190; 50.866]

[13.819;15.203]

[39.701; 47.246]

[14.341;15.554]

[41.560; 48.814]

[13.274;14.601]

[38.404; 45.228]

O I N UV | P~ TW|IN |

[9.9220;13.801]

[28.831; 41.980]

[EY
o

[15.374;16.755]

[44.481; 52.536]

[EEN
[EEN

[9.722;12.712]

[27.713; 40.499]

[EY
N

[11.767;13.936]

[34.405; 43.027]

[EY
w

[10.812;15.142]

[30.919; 47.091]

[EY
I

[13.760;16.562]

[39.351; 51.510]

[EY
(2

[14.698;15.769]

[41.710; 49.678]

[EY
(©))]

[12.448;13.519]

[35.674; 42.382]

15



Linear Regression for interval-valued variables

Example: Hematocrit and hemoglobin study

Scatter plots of the data

16
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R File Edit View Misc Packages Windows Help
=[28[a] [=]e]c][][@

Package ‘iRegression’
July 26, 2012

Type Package
Title Regression methods for interval-valued variables
Version 1.2
Date 2011-06-01
Depends mgev
Author Eufrasio de A. Lima Neto with contribution from Claudio A. Vasconcelos
Maintainer Eufrasio de A. Lima Neto <eufrasio@de. ufpb.br>

Description This package contains some important regression methods
for interval-valued vanables. For cach method, it is available
the fitted values, residuals and some goodness-of-fit measures.

License GPL (>=2)

LazyLoad yes

Repository CRAN

Date/Publication 2012-07-26 19:51:15
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I~ RGui - [R Console]

R File Edit View Misc Packages Windows Help

S E B RRIEIE

> cm <- cm(MinY~MinX, MaxY~MaxX,data=BillardSangueMinMax)
> cm
L LE

cm.formula (formulal = MinY ~ MinX, formula2 = MaxY ~ MaxX, data = BillardSangueMinMax)

Scoefficients
(Intercept) . |
-0.8146172 3.0805942

$sigma
[1] 0.5855333

$df
[1]) 14

$§fitted.values.1l
[1] 34.75084 36.38356 37.33546 37.24304 41.02293 41.75611 43.36418 40.07719 29.75104 46.54644

§fitted.values.u
[1] 38.63547 42.85897 48.99551 46.31231 49.22039 46.01966 47.10094 44.16514 41.70066 47.72014

$residuals.l

[1] -1.4548424 0.3104427 -0.6364609 -0.8570431 -1.8329321 -2.0551135 -1.8041837 -1.6731897 -0
[16] -1.8586189

$residuals.u

[1] 0.9655284 2.2640338 -0.3105098 1.0996877 1.6456068 1.2263441 1.7130556 1.0628618 O

[16] 1.5500647 18



< RGui - [R Console]

R File Edit View Misc Packages Windows Help

= CE E E ) E

> summary (cm)
Call:

cm.formula (formulal = MinY ~ MinX,

Estimate StdErr
(Intercept) -0.8146172 1.5826708
« § 3.0805942 0.1148388
RMSE.L:
[1] 1.651846
RMSE.U:

[1] 1.832516

formulaz2 MaxY ~ MaxX, data

BillardSangueMinMax)



< RGui - [R Console]

R File Edit View Misc Packages Windows Help

=[oR| [=]alc] (@] [@

> ccrm <- ccrm (CY~CX, RY~RX,data=BillardSangueCR)

> summary(ccrm)
Call:

ccrm. formula (formulal = CY ~ CX, formula2

Estimate.C StdErr.C
(Intercept) -0.8146172 1.5826708
CcX 3.0805942 0.1148388

Estimate.R StdErr.R
(Intercept) 4.751821 0.6524150
RX 2.279818 0.2623395

RMSE.L:
[1] 0.656672

RMSE.U:
[1] 0.891152

RY ~ RX, data BillardSangueCR)



Linear Regression for interval-valued variables

Example: Forest Fires

Original data:
« Collected from January 2000 to December 2003;
* The first database was collected by the responsible for
the Montesinho fire occurrences. Several features were
registered: date, spatial location, the total

burned area,...

* The second database was collected by the Braganca E}‘; Parque Natural de Montesinho

=

Polytechnic Institute, containing several weather
observations that were recorded by a meteorological

station located in Montesinho park.

Original variables selected:

. Three explicative variables:
Response variable :

area - burned area of the forest (in ha);
Transformed in LNarea=In(area+1)

temp - temperature in Celsius degrees;
wind - wind speed in km/h;
rh - relative humidity in percentage; 21



Linear Regression for interval-valued variables

Example: Forest Fires

Temporal aggregation: by month

Higher level units: months

Goal: Study the burned area of the

forest of the Montesinho natural park.

Some considerations:

For this study we considered only
the months and the records in
which forest fires occurred. For this
reason January and November were

eliminated.

Months area temp wind rh
Feb [0.74;3.97] | [4.6;12.4] | [0.9; 9.4] | [35,82]
Mar [0.67;3.63] | [5.3;17] [[0.9;9.4]| [26;70]
Apr [1.47;4.13] | [5.8;13.7] [[3.1;9.4]| [33;64]
May [3.68;3.68] | [18;18] [4; 4] [40;40]
June [0.64;4.27] | [14.3;28] |[1.8;9.4]| [34,;79]
July [0.31,;5.63] | [13.4;30.2] [ [0.9; 7.2] | [25;82]
Aug [0.09;6.62] | [11.2;33.3]([0.4; 8.9] | [22;88]
Sep [0.29;7.0] |[10.1;29.6]|[0.9; 7.6]| [15;78]
Oct [1.9;3.9] |[16.1;20.2]|[2.7; 4.5]

Dec [1.9;3.2] [2.2;5.1] |[4.9; 8.5]

22




Linear Regression for interval-valued variables

Example: Forest Fires

Models Expressions that allows predicting the intervals
CcM éLNa,,ea (]) =1.92+0.002¢,,,, (]) +0.003¢,, , (]) —-0.02¢, (])
LNarea (]) _O 39 + O Olltemp (]) + O 24]w1nd ( ) + 0 Ozlrh (.])
MinMax _ _
7 e (/) =1.16+0.01U np ()~ 0.04 L ina () +0.017n ()
Covarea (/) =1.92+0. 002¢,,,, (/)+0.003¢c,,., (7)—0.02¢, (/)
CRM : .
Fovarea (/) = 0.0140.077,,, (7)—0.01r,,., (7)+0.01r, (/)
CCRMI Civarea (/) =1.92+0. 002¢,,,, (/)+0.003¢c,,., (7)—0.02¢, (/)
Frvarea (/) = 0.004 40, 07r,,, (/)+0.01r, (/)
o w;gm(j) t)= 1.86+0.02y,,  (¢)=0.02p, . (1-1)=0.01y . (), t<[01]
éLNarea (j):1'86+0'0010temp (j)_O’Olcrh (.])’ ’;:LNarea( ) O O4rtemp (.])+O Olrrh( )
25




Linear Regression for interval-valued variables

Example: Forest Fires

Evaluate the performance of the models

Models RMSE, RMSE,, RMSE,, Mean Area
CM 0.3076 0.2676 0.1856 0.1504
MinMax 0.1481 0.0940 0.1044 0.0828
CRM 0.1030 0.1161 0.1038 0.0805
CCRM 0.1034 0.1156 0.1038 0.0804
ID 0.1106 0.1222 0.1066 0.0818

24




Linear Regression for interval-valued variables

Example: Forest Fires

Observed and predicted intervals considering different methods

2~

1.3

0.5F

1 !
February March April May June

25



Linear Regression for interval-valued variables

Example: Forest Fires

Observed and predicted intervals considering different methods

2.5

1.3

0.5

——LNArea observed
——LNArea_ predicted

‘ l ‘ LNArea , predicted
LNArea . predicted

——LNArea ., predicted
——LNArea , . . predicted

| ]
August September October December

26




Linear Regression for interval-valued variables

Example: Forest Fires

Observed and predicted quantile functions considering different methods

February

= =—=_LNarea observed
LNarealD predicted

o1 URTE— ——— ................... .................. Il _
: : ; : LNarea,,, predicted

: LNareaMinMax predicted
— LNarea i predicted

— | Narea coRM predicted

04 1 i i :

27




Linear Regression for histogram-valued variables

State-of-the-art

- METHODS BASED IN SYMBOLIC COVARIANCE DEFINITIONS (Billard and Diday, 2006)

- LINEAR REGRESSION FOR NUMERIC SYMBOLIC VARIABLES: AN ORDINARY LEAST SQUARES
APPROACH BASEAD ON WWASSERSTEIN DISTANCE (Verde and Irpino, 2015)

- LINEAR REGRESSION MODEL WITH HISTOGRAM-VALUED VARIABLES (Dias and Brito, 2015)

28



Linear Regression for histogram-valued variables
Introduction

For each observation j the distribution observations ¥; may be represented in different ways:

Y(j)

HISTOGRAM g — {|:ZY(j)l o [ pjl,-[ Ly, Ay, [ Dy [l v, I, [,Pjnj }

-

[ (—
UANTILE FUNCTION - _
Q lY(j)ler (]Y(j)1 ZY(j)l)’ O<t=w,
il
P <t<
P (o) T L Ve, T ) M =S
Y(_])(t) = j2 il
z‘—wj_1
I + (1 ~I ) w  <t<l]
\_Y(J)nj I_anj_l YU, _Y(‘])nj nj-1
0, [=0
= n; number of subintervals in the histogram 1
W, =
for the j observation; g ijh, [=1,...,n
— h=1
I/ <Iv) = |t is assumed that within each sub-interval

" =Y
nj T . . .
. Zpﬁ =1 the values [ly(j)l,ly(j)i [are uniformly dlstrlbuteg.
i1



Linear Regression for histogram-valued variables

Introduction

Representations of the distributions

0.8

0'6 B § =
Non-decreasing -

0.4+
s function B —

N 153 L n
T T T T

0.2

—

! i I i | 1 i I i
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 2 3 4 5 6 7 8

( t
H, = {[1,3[,0. 1;[3,5[,0.6;[5,8],(),3} l+oox2 0<1<01

q@%0=<3+t_%1x2 0.1<<0.7
s+ 12073 07<r<i
0.3

In a histogram the lower bound of each subinterval is always less than or equal to the
upper bound, Iy, <Iry, The lower bound of a subinterval is always greater or equal to
the upper bound of the previous sub-interval , /v, <1,;,.. Consequently, the quantile

function that represents the distribution is a non-decreasing function in the domain [0,1].
30




Linear Regression for histogram-valued variables

Introduction

U qbs_e N?d SATIEIEEL Work in the space where
el eI EITE Consequently the elements are quantile
represented by quantile

. functions
functions

All involved functions are rewritten with an equal
number of pieces and the domain of each piece
has to be the same for all functions.
However, the corresponding histograms are
not necessarily equiprobable histograms

To rewrite all observations in
the above conditions the
Irpino and Verde (2006)

process is used.

31



Linear Regression for histogram-valued variables

Introduction

Considerations

= p explicative histogram valued-variables X, with ke{1,..,p} and one response
histogram valued-variable Y;

=m observations of each variable X, (/) and Y{j), with j€{1,...,m}

=Each histogram X, (j) and Y{j), for all j€{1,...,m}, is defined with » subintervals,
1
X,

k

) and ]Y(j), with ie{1,...,n}, i.e.

Y ()= Loy Tron[ 2o L Trom |, 21}

X () ={[ Lo, on- Tnon] 2o Ly L | 2,

32



Linear Regression for histogram-valued variables

Introduction

Distance between distributions — Mallows distance

vy (1), v, (¢) : quantile functions that represent two distributions. Within each

subinterval the Uniform distribution is assumed.

2 . - . - - L 2 1 2
DM (‘//X (t)"//y (t))—j('//X (t)_‘//Y (t)) dt_z Pji |:(CX(]) _CY(J)) +§(FX(J) _FY(J)) }
0 j=1i=l
oo +1, Lo +1,

¢, =W X0 W0 W) centers of the intervals;

Xi(]) 2 Y,(]) 2
P Loy =Luy) = Dy =Ly half-ranges of the intervals

X () 2 R() o)

33



Linear Regression for histogram-valued variables

Center method generalized to histogram-valued variables (CM)

Billard and Diday, 2006. Symbolic Data Analysis: Conceptual Statistics and Data Mining. Chapter 6. John Wiley & Sons.
Dias, 2014. Linear regression with empirical distributions. Ph.D thesis, Chapter 3. Universidade do Porto, Portugal.

Linear regression relation:?(]) b, +b X1( )+ +b Xp( ) (])

S

where ?(]) = ch(j)pji and X ZCXk(J)p]l

i=1

Prediction of the histograms: ff(]) = {[Z?(j)l,FY(j)l [,pl Sl [lf(j)n’})}(j)n ],pn}

where to each subinterval i € {1,...,n}

p p —
Ly :min{b +Zb I, (]-)l-,b0+2bk])(k(j)i};
k=1 k=1
— p p —
IY( i = max Z (j)i’bO +Zbk]Xk(j)i
k=1

34



Linear Regression for histogram-valued variables

Center method generalized to histogram-valued variables (CM)

Billard and Diday, 2006. Symbolic Data Analysis: Conceptual Statistics and Data Mining. Chapter 6. John Wiley & Sons.
Dias, 2014. Linear regression with empirical distributions. Ph.D thesis, Chapter 3. Universidade do Porto, Portugal.

= The coefficients of the model are estimated by applying the classical model to the mean
values of the observations of the histogram-valued variables Y (), X« (/). k €{L..., p}

= The authors Billard and Diday don't present the process that may be used to predict the
distributions for the response variables from the explicative variables;

= A process to predict the histograms is suggested in the PhD thesis of Dias, 2014. The
presented process is a generalization of the process already used with the interval-valued
variables and requires that all histograms are defined with the same number of
subintervals;

" The method don’t predict distributions from other distributions;

=Descriptive linear regression model.

35




Linear Regression for histogram-valued variables

Irpino and Verde Model (1V)

Irpino and Verde, 2015. Linear regression for numeric symbolic variables: an ordinary least squares approach based on
Wasserstein Distance . Adv Data Anal Classif 9(1), 81-106.

l//)_(ll(j) (1), l//;(i(j) (1), o) (1) : quantile functions representing the distributions of the
explicative histogram-valued variables for observation j. These distributions are
decomposed:

*a part depending on the averages of the dlstrlbutlonsX ZCX ()P

*the centered quantile distributions Xk( )( ) v Xk( )( )_Xk (J)

Linear regression relation: » »
w‘ly(j) (1)=b,+> b, Xk )+ a, we Xk(]) +e, (1)
k=1 k=1

with a, >0, b e€lIR, ke{l,...,p}.

"The method relies on the exploitation of the properties of a decomposition of the
Mallows (Wasserstein) distance;

" The parameters are obtained by minimizing the Mallows's distance between the

observed and the derived quantile functions of the dependent variable;
36




Linear Regression for histogram-valued variables

Distribution and Symmetric Distribution Models (DSD)

Dias and Brito, 2015. Linear Regression Model with histogram-valued variables. Stat Anal Data Min 8(2), 75-113.
Dias, 2014. Linear regression with empirical distributions. Ph.D thesis. Universidade do Porto, Portugal.

w)'(ll(j) (1), w)}l(j) (),..., %_fi(f) (t),l//;(lj) (1) : quantile functions representing the distributions
of the explicative and response histogram-valued variables for observation j.

Linear regression relation:

DSD |
l//_lY(j) (t) a l//_le(j) (t)_bl W_le(j) (l_t)"'+ap l//_lXp(j) (t)_bpl//_lXp(j) (l_t)+ej (t)

with a,,b, >0, ke{l,...,p}, v e lR.

DSD Il
W_l?(j) (t) al W_le(j) (t)_bl w_le(j) (1—t)...+ap l//_lXp(j) (t)_bpw_lxp(j) (l_t)+ej (t)
with a, b 20, ke {1 ..... p}

The error function is a piecewise linear function (but not necessarily a quantile function)
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Linear Regression for histogram-valued variables

Distribution and Symmetric Distribution Models (DSD)

= |s it necessary to impose constraints to the parameters of the model?
Why?  wsit necessary to include in the model the quantile functions ¥ , (1-¢)?
What does it represent?

By, (t) is not a 1ok
function;

The symmetrlc functlon -
y! (t) does not represent' ey
'?"fj a hlstogram i

J Consequently, it is not
possible to obtain the | : g ; : : E 5 :
symmetric distribution It b D

. . . 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
multiplying the quantile

o A Do v s o

[}

function by -1. The product of a quantile function by a real number A:
*is a non-decreasing function if A > 0.

*is NOT A NON-DECREASING FUNCTION if A <O.
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Linear Regression for histogram-valued variables

Distribution and Symmetric Distribution Models (DSD)

Product of an interval by a real number — interval arithmetic (Moore, 1966)

a[lxj)(]: [Q%X’CZFX} if a=0
[alx,alX} if a<0

-H, ={[-89.03[-5-3.06]-3-1].01 H, ={[1,3[.0.1,[3,5[,0.6,[5.8].0.3}
(0.7 v .HX-HX

(1K SRR —— | EESRPERERITEES SIS 00 SRR

02 ISUTUTIIRUPIN U DIPTSR

A—x3-AmMm2232<wn

S >P300-4Awnw-—-T=I
S >PxO00-4Awn-—-=I

0
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Linear Regression for histogram-valued variables

Distribution and Symmetric Distribution Models (DSD)

T T T T T T T 1+-x2  0<r<0.1
I 0.1

vl —wly
‘ ‘ Pl (f) =43+
0.6

x2 0.1<t<0.7

5+t—07

i é | ? | | % é ? x3 07<t<l
s SN S N—— AU— S S— S— — S—— ! \ 0.3

DN D S SN U SO A N . C
3 5 : : | 5 f : 1 —-8+—x3 0<r<0.3
: ; z : : : : : ] 03

t—03

Yy (1-1)=1-5+ 02 x2 03<t<0.7

4, 1707

p I N N N S NN SR R
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1 L 0.3

x2 07<t<L1

Quantile function representing the symmetric histogram -¥~' (1-¢) : obtained from the

quantile function ¥ (¢) withz €[0,1].
40



Linear Regression for histogram-valued variables

Distribution and Symmetric Distribution Models (DSD)

= The quantile function that represents the symmetric histogram is obtained from the
quantile function ¥~' () and is the function _yp-! (1-¢) with7€ [0.1] ;

I (1—1) is a non-decreasing function;

= ! (t)+(_k11-1 (1—1‘)) is not a null function but is a quantile function with mean zero;
= —¥'(1-1)=¥"'(¢) only when the histograms are symmetric;

= Applying the Irpino and Verde process to the functions ! (;)and ! (l—t) the

distributions are defined with and equal number of subintervals each of which have
associated weights p; that verify the condition p,=p, ;,;, with i e {1, 2n} .

t- e
1+ —x2 0<r<0.1 g4 0<t<0.1
0.1 0.1 - '
t-0.1 2 _
+ x— 01<¢<03 720 01<r<03
0.2 3 0.2
_ 11 r-03 4 —03 4
¥l () ={—+ x— 03<t<0.7 @ (1—f)=d 54202 2 <
() 3 02 3 J(1-1)=1-5+ x5 03s1<07
s+ 1797 0 07<1<09 0T 2 0 7<<09
0.2 302 3
t—0.9 - 0.
7+ 09<r<1 3417990 po<r<i
0.1 i 0.1 a1




Linear Regression for histogram-valued variables

Distribution and Symmetric Distribution Model (DSD)

For classical variables

=, +,le1j +...+,Bpxpj

n

Minimize Zn:ef = Z(yj _-)/}]')

Least squares method

PRED

For histogram-valued variables

ICTION
l//_l);(j) (t) = l//_ICOnstant (t)+ a, l//_le(j) (t)_ bl l//_le(j) (1 - f)+

ERROR MEASURE

2

DSD Model | 1
Minimize SE = ZI(WY(]) (z‘) l//Y( )(t)) dt

J=19
with a,_,b, >0, kE{l,.--,P}
DSD Model Il

2
Minimize SE = ZI(V/Y(]) )—l,//;(lj)(t)) dt

J=lo

with  a,,b, 20,ke{l,..., p};
r, 20,ie{l,....,n}

Vi

42

Mallows distance is applied



Linear Regression for histogram-valued variables

Distribution and Symmetric Distribution Models (DSD)

For classical variables ‘ For histogram-valued variables

From the decomposition

>, | XD, (0.7)=
(v =7) =200,-7) +X(v-3)) a

— - — m ~ _ m ~ ~
’ ’ ’ =20 (v iy (0 T+ 20 (1 (95 (1)

the goodness-of-fit measure of the model is given by

.
1l
LR

D%y (w7, (07)

M=
—
3)

=
NeE

1

RZ = I O J

DZM W_ly(j) (t)’Y)

Ms
—_
=
[
< |
SN—
M=

Il
—

j
COEFFICIENT OF DETERMINATION _ .
Y is the symbolic mean of the
y is the classical mean of the variable y histogram-valued variable Y
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Linear Regression for histogram-valued variables

Distribution and Symmetric Distribution Models (DSD)

Histogram-valued variables

DSD Regression Models Goodness-of-fit measure Q

Interval-valued variables

ID Model - DSD Models particularize

) ) Goodness-of-fit measure QQ
to interval-valued variables

Classical variables

Classical linear regression model  Coefficient of determination

44



Linear Regression for histogram-valued variables
Example: Histogram data

Observations ) 4

1 {[33.29;37.52[,0.6;[37.52;39.61],0.4}

X

{[11.54;12.19[,0.4;[12.19;12.8],0.6}

N

{[36.69;39.11[,0.3;[39.11;45.12],0.7}

{[12.07;13.32[,0.5;[13.32;14.17],0.5}

{[36.69;42.64[,0.5;[42.64;48.68],0.5}

{[12.38;14.2[,0.3;[14.2;16.16],0.7}

{[36.38;40.87[,0.4;[40.87;47.41],0.6}

{[12.38;14.26[,0.5;[14.26;15.29],0.5}

{[39.19;50.86],1}

{[13.58;14.28[,0.3;[14.28;16.24],0.7}

{[39.7;44.32[,0.4;[44.32;47.24],0.6}

{[13.81;14.5[,0.4;[14.5;15.2],0.6}

{[41.56;46.65[,0.6;[46.65;48.81],0.4}

{[14.34;14.81[,0.5;[14.81;15.55],0.5}

{[38.4;42.93[,0.7;[42.93;45.22],0.3}

{[13.27;14.0[,0.6;[14.0;14.6],0.4}

Ol V| I N[O |(UL| DB W

{[28.83;35.55[,0.5;[35.55;41.98],0.5}

{[9.92;11.98[,0.4;[11.98;13.8],0.6}

10 {[44.48;52.53],1}

{[15.37;15.78[,0.3;[15.78;16.75],0.7}
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Linear Regression for histogram-valued variables

Example: Histogram data

Scatter plot of the data




Linear Regression for histogram-valued variables

Example: Histogram data

VARIABLES X AND Y
55, _ —
sol
e
40l
35k

30

25 1 1 1 1 1 1 1 %
9 10 11 12 13 14 15 16 17

Wiy (1) ==1.95+3.56 7" ) (1) =041y~ (1-1)

500

L]

45" :

[ ]

[ ]

° [ ]
L ]
40
[ ]
. 1 | 1 | ]
12 13 14 15 16 17

Y(j)=-1.95+(3.56-0.41) X (/)

551

e

VARIABLES -X AND Y

! 1 1 I ! I i 1
7 -16 -15 -14 -13 -12 -11 -10 -9

vl (6)=-1954041y 7 (1) =356, (1-1)
50
45} L
40/ o )
o7 16 15 14 13 .-.fz

Y(j)=-1.95+(0.41-3.56) X (j) ¥



Linear Regression for histogram-valued variables

Example: Crimes in USA

Original data:

*Socio-economic data from the '90 Census

*Crime data from 1995

First level units: Cities of the USA states

Observations associated to each unit:

* The records (real values) associated to the cities
in USA states.

* Only consider the states for which the number of
records for all selected variables was higher than thirty — twenty states were considered.

Original variables

Response variable :

VC - violent crimes (total number of violent crimes per 100 000 habitants)
Four explicative variables:
LEd - percentage of people aged 25 and over with less than 9th grade education;
Emp - percentage of people aged 16 and over who are employed;
Div - percentage of population who are divorced;
Img - percentage of immigrants who immigrated within the last 10 years. 48



Linear Regression for histogram-valued variables

Example: Crimes in USA

Cities States LEd Emp Div Img vC
Selma AL 16.59 46.94 13.35 73.86 2758.9
Bessemer AL 16.97 46.83 14.46 18.39 1257.09
Dothan AL 11.71 62.19 13.75 34.25 373.54
San Pablo CA 14.03 55.94 16.57 62.3 374.07
Glendale CA 11.54 60.04 11.12 60.4 644.75

Enfield CT 6.55 68.24 8.38 27.01 78.65
Newingtont CT 8.71 67.54 8.57 18.44 2127.02

New Haven CT 11.86 56.71 12.44 46.52 53.2

Rockledge FL 4.07 64.92 11.99 23.72 142.7
Ormond Beach FL 4.72 51.11 10.31 13.69 339.96
Sebastian FL 7.04 48.43 9.08 17.35 1981.45
Alpharetta GA 2.21 75.34 12.84 53 958.15
Valdosta GA 11.35 59.19 12.97 37.64 1358.47




Linear Regression for histogram-valued variables

Example: Crimes in USA

Contemporary aggregation for state.

. . States LEd vC

Higher level units: USA states
Observations associated to each unit: AL
*The distributions of the records of the
cities of the respective state;
*|In all observations, the subintervals of CA
each histogram have the same weight
(equiprobable) with frequency 0.20.

CT
Goal: Study the criminality in the USA states

FL
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Linear Regression for histogram-valued variables

Example: Crimes in USA

{DSD Model | }
W_lﬁc(,-) (r)= 3.9321+0.0009 ., (£)=0.0123, . (1-1)+ 02073y, (1)~
—~0.0353y,,, , (1-1)+0.0187y,. . (1), 1€[0,1]
Q =0.8680
[DSD Model Il ]

W ()= Ve (£)+0.016 7,0 () =0.009,, o (1=1)+ 0155y, (£)+0.019, . (¢),

Lre())

%.37{%—1}0.42 0<r<02

2(1-0.2)
3.83+| = —L-1]x004 02<r<04

3.9+(M—1jx0.03 0.4<7<0.6 Q=0.8818

l//_ICOnstant (t) =9

0.2
3.93 0.6<r<1




Linear Regression for histogram-valued variables

Example: Crimes in USA

Washington
| New ‘.I ersey

| | | | | | | —[,VC observed
0.2 0.3 0.4 0.5 0.6 0.7 0.& —LVCDSDIPTediCted

—LVChon prédicted




Linear Regression for histogram-valued variables

Example: Crimes in USA

Predicted distribution of LVC:
w . ()= 3.9321+0.0009 y, , (£)=0.0123p,  (1=1)+ 0.2073y, . (¢)-

A

LVC(j)
- 0. 03531//D ()(1 t)+0 0187W1mg(J)( ) te[O,l]
Interpretation:

= The variables LEd, Div and Img have a direct influence in the logarithm of the number of

violent crimes. The percentage of employed people, Emp, has an opposite effect.

For each unit j, letY (]) be the distribution predicted by the DSD Model | and consider

the parameters obtained for the optimal solution b*=(a,*, b,* a,*,b,*...,a,* b, *, v ¥).
— — P

The mean of the predicted histogram-valued variable Y is given by Y= Z(aZ -b, )Yk +v’

k=1
= For the set of states to which the data refer, when the symbolic mean of the percentage

of divorced population increases 1% and the other variables remain constant, the e

symbolic mean of the LVC increases 0.172.



Linear Regression for histogram-valued variables

Example: Crimes in USA

Evaluate the performance of the models

Models RMSE, RMSE,, RMSE,,
CM 0.9182 0.5617 0.6717
IV 0.5214 0.3444 0.3933
DSD | 0.5571 0.4233 0.4477
DSD i 0.5164 0.3992 0.4237




Linear Regression for histogram-valued variables

Example: Crimes in USA

Observed and predicted quantile functions considering different methods

9 ! s ) : 10 ! 3 ; : 9

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
LNC. . predicted

——-LVC observed LNC ot predicted LNC sepit predicted LN o predicted
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