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- METHODS BASED IN SYMBOLIC COVARIANCE DEFINITIONS (Billard and Diday, 2000;2006; Xu, 

2010)

- MINMAX METHOD (Billard and Diday, 2002)

- CENTER AND RANGE METHOD (Lima Neto and De Carvalho,2008)

- CENTER AND RANGE LEAST ABSOLUTE DEVIATION REGRESSION METHOD (Maia and 

Carvalho, 2008)

- CONSTRAINED CENTER AND RANGE METHOD (Lima Neto and De Carvalho, 2010)

- LASSO IR  METHOD (Giordani, 2014)

- BIVARIANTE SYMBOLIC REGRESSION MODELS (Lima Neto et al,2011)

-LINEAR REGRESSION MODELS FOR SYMBOLIC INTERVAL DATA USING PSO ALGORITHM (Yang  

et al, 2011)

- MONTE CARLO METHOD (Ahn et al,2012)

- RADIAL BASIS FUNCTION NETWORKS (Su et al, 2012)

- COPULA INTERVAL REGRESSION METHOD (Neto et al, 2012)

- INTERVAL DISTRIBUTIONAL MODEL (Dias and Brito, in study)

Linear Regression for interval-valued variables   
State-of-the-art
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Linear Regression for interval-valued variables   
Introduction 

For each observation j the interval observations Yj may be represented in different ways:

INTERVALS

• defined from the bounds with                  

• defined from the centers and half-ranges          where

center of the interval;                                                            half range of the interval 

PARAMETERIZATION OF THE INTERVALS/ QUANTILE FUNCTONS

Assuming the Uniform distribution within the intervals:

• defined from the bounds

•defined from the centers and half-ranges 

( ) ( )Y jY jI I≤
j

j
YYj

Y I ,I =  

( ) ( ) ( ) ( ) ( )Y j Y j Y j Y j Y j
I c r ,c r = − + 

( )

( ) ( )

2

Y j Y j

Y j

I I
c

+

= ( )

( ) ( )

( ) 0
2

Y j Y j

Y j Y j

I I
r , r

−

= ≥

( ) ( )1
( )( ) ( )( )

, 0 1Y jY j Y jY j
t I I I t t

−

Ψ = + − ≤ ≤

( ) ( )1

( ) ( ) ( )
2 1 , 0 1

Y j Y j Y j
t c r t t

−

Ψ = + − ≤ ≤

5



In an interval                  we have always               . Consequently, the quantile function that 

represent the interval is a non decreasing function with domain [0,1].

Y
Y
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Linear Regression for interval-valued variables   
Introduction 
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• Estimation of the parameters
Billard and Diday, 2000. Regression analysis for interval-valued data. Proceedings of IFCS’00, pp.369-374. Springer.

Linear regression relation: ( ) ( ) ( ) ( )
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Prediction of the intervals:
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� The coefficients of the model are estimated by applying the classical model to the mid-point of the

intervals;

� Estimates separately the bounds of the interval;

� To write the estimated interval we have to consider the lower value for the lower bound and higher

for the upper bound of the interval;

� The estimation of the parameters may be obtained by an adaptation of the solution obtained by

the Least Square estimation method for the classical linear model, where symbolic definitions of

variance and covariance are used;

� Descriptive linear regression model;

� Available in R Package: iRegression 1.2.

Linear Regression for interval-valued variables   
The Center Method (CM)
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• Estimation of the parameters
Billard and Diday, 2002. Symbolic regression analysis. Proceedings of IFCS’02, pp.281-288. Springer.

Linear regression relation :

Prediction of the intervals:

� Requires the adjustment of two linear regression models, for the lower and upper bounds of

the interval;

� The coefficients of the model are estimated by applying the classical model to the lower and

upper bounds of the interval;

� The estimated value for the upper bound of the interval may be smaller than the lower. This

can happen if there are negative coefficients in the model;

� Descriptive linear regression model;

� Available in R Package: iRegression 1.2.
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Linear Regression for interval-valued variables   
Min Max Method (MinMax)
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• Estimation of the parametersLima Neto and de Carvalho, 2008. Center and Range method for fitting a linear regression model to symbolic interval 

data.  Computational Statistics & Data Analysis 52 (3), 1500-1515.

Linear regression relation :

Prediction of the intervals:

� Requires the adjustment of two linear regression models, for the mid-point and half range of 

the interval;

� The coefficients of the model are estimated by applying the classical model to the mid-point 

and half range of the interval;

� The estimated value for the range of the interval may be negative. This can happen if there 

are negative coefficients in the model that estimates the half range;

� Descriptive linear regression model;

� Available in R Package: iRegression 1.2.
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Linear Regression for interval-valued variables   
The Center and Range Method (CRM)
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• Estimation of the parametersLima Neto and de Carvalho, 2010. Constrained linear regression models for symbolic interval-valued variables. 

Computational Statistics & Data Analysis 54 (2), 333-347.

Linear regression relation :

Prediction of the intervals:

� The mid-points and half ranges of the intervals are estimated independently;

� The coefficients of the centers model are estimated by applying the classical model to the

mid-points of the intervals;

� The coefficients of the half ranges model are estimated using the Lawson and Hanson’s

algorithm (Lawson and Hanson, 1995).

� Because of the restriction imposed, the linear relation between the half range of the intervals

has to be always positive;

� Descriptive linear regression model;

� Available in R Package: iRegression 1.2.
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Linear Regression for interval-valued variables   
The Constrained Centre and Range Method (CCRM)
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• Estimation of the parametersLima Neto, Cordeiro, De Carvalho, 2011. Bivariate symbolic regression models for interval-valued variables. Journal of 

Statistical Computation and Simulation 81 (11), 1727-1744.

Interval-valued variables: and

•defined as bivariate quantitative vectors composed by two one-dimensional variables;

•the components are quantitative classical variables that may be represented by the bounds

(lower and upper) or the center and half range;

•the response interval-valued variable Y has a random nature.

Linear regression relation

Adaptation to interval-valued variables of the Bivariate Generalized Linear Model.

�It is assumed that the components of the bivariate vectors follow a bivariate exponential

family;

�It is possible to guarantee the non negativity for the predicted values of the half ranges;

�Probabilistic linear regression model. Inference techniques can be considered.

�Information about the variability within the intervals is not taken into account.

� Available in R Package: iRegression 1.2.
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Linear Regression for interval-valued variables   
Bivariate Symbolic Method
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• Estimation of the parameters
Dias, 2014. Linear regression with empirical distributions. Ph.D thesis, Chapter 5.  Universidade do Porto, Portugal. 

Linear regression relation:

Linear Regression for interval-valued variables   
Interval Distributional Model (ID)
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The error e( j ), for each unit j, is a linear function, but not necessarily a quantile function.

12



Dias, 2014. Linear regression with empirical distributions. Ph.D thesis, Chapter 5.  Universidade do Porto, Portugal. 

�As the model uses quantile functions to represent the intervals, the distributions within them

are considered;

� In the present model, the Uniform distribution is assumed in each observed interval, however

other distributions may be considered;

� The linear relations between the centers and half ranges induced by the model are different,

although related;

� The non-negative parameters of the model are determined by solving a quadratic optimization

problem, subject to non-negativity constraints. The distance used to quantify the dissimilarity

between predicted and observed quantile functions is the Mallows Distance (Uniform distribution

is assumed)

� It is possible to estimate the quantile functions for the response variable directly from the

model;

� A goodness-of-fit measure,Ω is derived from the model;

�Descriptive linear regression model;

�Information about the variability within the intervals is taken into account.

Linear Regression for interval-valued variables   
Interval Distributional Model (ID)
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Linear Regression for interval-valued variables   
Measure the dissimilarity between intervals
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Root Mean Square Errors (Lima Neto and De Carvalho, 2008, 2010)

Error measure defined with the Mallows Distance, assuming the Uniform 

distribution within the intervals (Irpino and Verde, 2015)
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Interval data:

Ranges of the values of hematocrit and 

hemoglobin of 16 patients in a hospital.

Variables:

Response variable:  Y - hematocrit

Explicative variables: X - hemoglobin 

Higher level units: pacients

Goal: Study the ranges of hematocrit

from the ranges of hemoglobin.

j X Y

1 [11.54;12.806] [33.296; 39.601]

2 [12.075;14.177] [36.694; 45.123]

3 [12.384;16.169] [36.699; 48.685]

4 [12.354;15.298] [36.386; 47.412]

5 [13.581;16.242] [39.190; 50.866]

6 [13.819;15.203] [39.701; 47.246] 

7 [14.341;15.554] [41.560; 48.814]

8 [13.274;14.601] [38.404; 45.228]

9 [9.9220;13.801] [28.831; 41.980]

10 [15.374;16.755] [44.481; 52.536]

11 [9.722;12.712] [27.713; 40.499]

12 [11.767;13.936] [34.405; 43.027]

13 [10.812;15.142] [30.919; 47.091]

14 [13.760;16.562] [39.351; 51.510]

15 [14.698;15.769] [41.710; 49.678]

16 [12.448;13.519] [35.674; 42.382]

Linear Regression for interval-valued variables   
Example: Hematocrit and hemoglobin study
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Scatter plots of the data

Linear Regression for interval-valued variables   
Example: Hematocrit and hemoglobin study
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Original data:

• Collected from January 2000 to December 2003;

• The first database was collected by the responsible for 

the Montesinho fire occurrences. Several features were 

registered: date, spatial location, the total 

burned area,…

• The second database was collected by the Bragança

Polytechnic Institute, containing several weather 

observations that were recorded by a meteorological 

station located in Montesinho park.

Original variables selected:

Response variable :  

area - burned area of the forest (in ha);

Transformed in LNarea=ln(area+1)

Three explicative variables: 

temp - temperature in Celsius degrees;

wind - wind speed in km/h; 

rh - relative humidity in percentage; 

Linear Regression for interval-valued variables   
Example: Forest Fires
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Months area temp wind rh

Feb [0.74;3.97] [4.6;12.4] [0.9; 9.4] [35;82]

Mar [0.67;3.63] [5.3;17] [0.9; 9.4] [26;70]

Apr [1.47;4.13] [5.8;13.7] [3.1; 9.4] [33;64]

May [3.68;3.68] [18;18] [4; 4] [40;40]

June [0.64;4.27] [14.3;28] [1.8; 9.4] [34;79]

July [0.31;5.63] [13.4;30.2] [0.9; 7.2] [25;82]

Aug [0.09;6.62] [11.2;33.3] [0.4; 8.9] [22;88]

Sep [0.29;7.0] [10.1;29.6] [0.9; 7.6] [15;78]

Oct [1.9;3.9] [16.1;20.2] [2.7; 4.5] [25;45]

Dec [1.9;3.2] [2.2;5.1] [4.9; 8.5] [21;61]

Temporal aggregation: by month

Higher level units: months

Goal: Study the burned area of the 

forest of the Montesinho natural park.

Some considerations:

For this study we considered only

the months and the records in

which forest fires occurred. For this

reason January and November were

eliminated.

Linear Regression for interval-valued variables   
Example: Forest Fires

22



Linear Regression for interval-valued variables   
Example: Forest Fires

Models Expressions that allows predicting the intervals
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Linear Regression for interval-valued variables   
Example: Forest Fires

Models RMSE
L

RMSE
U

RMSE
M

Mean Area

CM 0.3076 0.2676 0.1856 0.1504

MinMax 0.1481 0.0940 0.1044 0.0828

CRM 0.1030 0.1161 0.1038 0.0805

CCRM 0.1034 0.1156 0.1038 0.0804

ID 0.1106 0.1222 0.1066 0.0818

24

Evaluate the performance of the models



Linear Regression for interval-valued variables   
Example: Forest Fires
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Observed and predicted intervals considering different methods



Linear Regression for interval-valued variables   
Example: Forest Fires
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Observed and predicted intervals considering different methods



Linear Regression for interval-valued variables   
Example: Forest Fires
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Observed and predicted quantile functions considering different methods



- METHODS BASED IN SYMBOLIC COVARIANCE DEFINITIONS (Billard and Diday, 2006)

- LINEAR REGRESSION FOR NUMERIC SYMBOLIC VARIABLES: AN ORDINARY LEAST SQUARES

APPROACH BASEAD ON WASSERSTEIN DISTANCE (Verde and Irpino, 2015)

- LINEAR REGRESSION MODEL WITH HISTOGRAM-VALUED VARIABLES (Dias and Brito, 2015)

Linear Regression for histogram-valued variables   
State-of-the-art
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�

� It is assumed that within each sub-interval               

the values                are uniformly distributed.

� nj number of subintervals in the histogram 

for the jth observation;

�

�

For each observation j the distribution observations Yj may be represented in different ways:

HISTOGRAM

QUANTILE FUNCTION
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Linear Regression for histogram-valued variables   
Introduction 
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Non-decreasing 

function

Linear Regression for histogram-valued variables   
Introduction 

In a histogram the lower bound of each subinterval is always less than or equal to the

upper bound , . The lower bound of a subinterval is always greater or equal to

the upper bound of the previous sub-interval , . Consequently, the quantile

function that represents the distribution is a non-decreasing function in the domain [0,1].

i
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+
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The observed empirical 

distributions are 

represented by quantile
functions

Consequently
Work in the space where

the elements are quantile

functions

All involved functions are rewritten with an equal 

number of pieces and the domain of each piece 

has to be the same for all functions.  

However,  the corresponding  histograms are 
not necessarily equiprobable histograms. 

To rewrite all observations in 

the above conditions the 

Irpino and Verde (2006) 

process is used.

Linear Regression for histogram-valued variables   
Introduction 
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Linear Regression for histogram-valued variables   
Introduction 
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Considerations

� p explicative histogram valued-variables X
k

with k∈{1,…,p} and one response

histogram valued-variable Y;

�m observations of each variable X
k

(j) and Y(j), with j∈{1,…,m}

�Each histogram X
k

(j) and Y(j), for all j∈{1,…,m}, is defined with n subintervals,

and with i∈{1,…,n}, i.e.
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: quantile functions that represent two distributions. Within each 

subinterval the Uniform distribution is assumed.                                     

centers of the intervals;   

half-ranges of the intervals
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Introduction 

Distance between distributions – Mallows distance



• Estimation of the parameteBillard and Diday, 2006. Symbolic Data Analysis: Conceptual Statistics and Data Mining. Chapter 6. John Wiley & Sons.

Dias, 2014. Linear regression with empirical distributions. Ph.D thesis, Chapter 3.  Universidade do Porto, Portugal. 

Linear regression relation:

Linear Regression for histogram-valued variables   
Center method generalized to histogram-valued variables (CM)
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Prediction of the histograms:
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• Estimation of the parametersBillard and Diday, 2006. Symbolic Data Analysis: Conceptual Statistics and Data Mining. Chapter 6. John Wiley & Sons.

Dias, 2014. Linear regression with empirical distributions. Ph.D thesis, Chapter 3.  Universidade do Porto, Portugal. 

� The coefficients of the model are estimated by applying  the classical model to the mean 

values of the observations of the histogram-valued variables                                                     

� The authors Billard and Diday don't present the process that may be used to predict the 

distributions for the response variables from the explicative variables;

� A process to predict the histograms is suggested in the PhD thesis of Dias, 2014. The 

presented process is  a generalization of the process already used with the interval-valued 

variables and requires that all histograms are defined with the same number of 

subintervals;

� The method don’t predict distributions from other distributions;

�Descriptive linear regression model.

Linear Regression for histogram-valued variables   
Center method generalized to histogram-valued variables (CM)

( ) ( ) { }1kY j ,X j , k , , p∈ K
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• Estimation of the parametersIrpino and Verde, 2015. Linear regression for numeric symbolic variables: an ordinary least squares approach based on 

Wasserstein Distance . Adv Data Anal Classif 9(1), 81-106.

Linear regression relation:

Linear Regression for histogram-valued variables   
Irpino and Verde Model (IV)

( ) ( ) ( ) ( ) ( ) ( )

{ }

1 1

0

1 1

0 1

k

p p
c

kk k jY j X j
k k

k k

t b b X j a t e t

with a , b IR , k , , p .

ψ ψ
− −

= =

= + + +

≥ ∈ ∈

∑ ∑

K

�The method relies on the exploitation of the properties of a decomposition of the

Mallows (Wasserstein) distance;

� The parameters are obtained by minimizing the Mallows's distance between the

observed and the derived quantile functions of the dependent variable;

: quantile functions representing the distributions of the 

explicative histogram-valued variables for observation j. These distributions are 

decomposed:

•a part depending on the averages of the distributions 

•the centered quantile distributions

( ) ( )
1

j

k

n

k jiX j
i

X j c p
=

=∑

( ) ( ) ( ) ( ) ( )1 1

k k

c

kX j X j
t t X jψ ψ

− −

= −
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• Estimation of the parametersDias and Brito, 2015. Linear Regression Model with histogram-valued variables. Stat Anal Data Min 8(2), 75-113.

Dias, 2014. Linear regression with empirical distributions. Ph.D thesis.  Universidade do Porto, Portugal. 

Linear Regression for histogram-valued variables   
Distribution and Symmetric Distribution Models (DSD)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2

1 1 1 1

p
X j X j X j Y j

t , t , , t , tψ ψ ψ ψ
− − − −

K : quantile functions representing the distributions 

of the explicative and response  histogram-valued variables for observation j.

Linear regression relation:
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The error function is a piecewise linear function (but not necessarily a quantile function)
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DSD I

DSD II
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The product of a quantile function by a real number λ:

•is a non-decreasing function if λ ≥ 0.

•is NOT A NON-DECREASING FUNCTION if λ <0.

� If one β
k 

is negative,   

is  not  a 

non-decreasing 

function;

� Consequently, it is not 

possible to obtain the 

symmetric distribution 

multiplying the quantile

function by -1.

( ) ( )1

k
k X j

tβ ψ −

Linear Regression for histogram-valued variables   
Distribution and Symmetric Distribution Models (DSD)

The symmetric function -

ψ-1 (t) does not represent 

a histogram. 

38

� Is it necessary to impose constraints to the parameters of the model?

� Is it necessary to include in the model the quantile functions ?

What does it represent?

( ) ( )1
1

k
X j

t
−

−Ψ −Why?



Product of an interval by a real number – interval arithmetic (Moore, 1966)
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Linear Regression for histogram-valued variables   
Distribution and Symmetric Distribution Models (DSD)
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Quantile function representing the symmetric histogram                    : obtained from the 

quantile function            with              .( )1
t

−

Ψ

( )1
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−Ψ −

[ ]0 1t ,∈

Linear Regression for histogram-valued variables   
Distribution and Symmetric Distribution Models (DSD)
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� The quantile function that represents the symmetric histogram is obtained from the 

quantile function               and is the function                      with               ;

� is a non-decreasing function;

� is not a null function but is a quantile function with mean zero;

� only when the histograms are symmetric;

� Applying the Irpino and Verde process to the functions             and                    , the 

distributions are defined with and equal number of  subintervals each of which have 

associated weights p
i

that verify the condition p
i
= p

n-i +1
, with                         . 
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t
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For classical variables For histogram-valued variables
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PREDICTION
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ERROR MEASURE

Least squares method 

Mallows distance is applied
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DSD Model I

DSD Model II

Linear Regression for histogram-valued variables   
Distribution and Symmetric Distribution Model (DSD)
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For classical variables For histogram-valued variables

From the decomposition

the goodness-of-fit measure of the model is given by
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ȳ is the classical  mean  of the variable y
Ȳ is the symbolic mean of the 

histogram-valued variable Y

COEFFICIENT OF DETERMINATION

Linear Regression for histogram-valued variables   
Distribution and Symmetric Distribution Models (DSD)
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Classical variables

Classical linear regression model Coefficient of determination

Interval-valued variables

ID Model - DSD Models particularize 

to interval-valued variables
Goodness-of-fit measure Ω

Histogram-valued variables

DSD Regression Models Goodness-of-fit measureΩ

Linear Regression for histogram-valued variables   
Distribution and Symmetric Distribution Models (DSD)
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Linear Regression for histogram-valued variables   
Example: Histogram data

Observations Y X

1 {[33.29;37.52[,0.6;[37.52;39.61],0.4} {[11.54;12.19[,0.4;[12.19;12.8],0.6}

2 {[36.69;39.11[,0.3;[39.11;45.12],0.7} {[12.07;13.32[,0.5;[13.32;14.17],0.5}

3 {[36.69;42.64[,0.5;[42.64;48.68],0.5} {[12.38;14.2[,0.3;[14.2;16.16],0.7}

4 {[36.38;40.87[,0.4;[40.87;47.41],0.6} {[12.38;14.26[,0.5;[14.26;15.29],0.5}

5 {[39.19;50.86],1} {[13.58;14.28[,0.3;[14.28;16.24],0.7}

6 {[39.7;44.32[,0.4;[44.32;47.24],0.6} {[13.81;14.5[,0.4;[14.5;15.2],0.6}

7 {[41.56;46.65[,0.6;[46.65;48.81],0.4} {[14.34;14.81[,0.5;[14.81;15.55],0.5}

8 {[38.4;42.93[,0.7;[42.93;45.22],0.3} {[13.27;14.0[,0.6;[14.0;14.6],0.4}

9 {[28.83;35.55[,0.5;[35.55;41.98],0.5} {[9.92;11.98[,0.4;[11.98;13.8],0.6}

10 {[44.48;52.53],1} {[15.37;15.78[,0.3;[15.78;16.75],0.7}
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Linear Regression for histogram-valued variables   
Example: Histogram data

Scatter plot of the data
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( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 95 3 56 0 41 1ˆ X j X jY j

t . . t . tψ ψ ψ
− − −

= − + − −

( ) ( ) ( )1 95 3 56 0 41Y j . . . X j= − + −

( ) ( ) ( ) ( ) ( ) ( )1 1 1
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VARIABLES X AND Y VARIABLES -X AND Y

Linear Regression for histogram-valued variables   
Example: Histogram data
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Original data:

•Socio-economic data from the '90 Census

•Crime data from 1995

First level units: Cities of the USA states

Observations associated to each unit: 

• The records (real values) associated to the cities

in USA states.

• Only  consider the states for which the number of 

records for all selected variables was higher than thirty – twenty states were considered.

Original variables

Response variable :  

VC - violent crimes (total number of violent crimes per 100 000 habitants)

Four explicative variables: 

LEd - percentage of people aged 25 and over with less than 9th grade education;

Emp - percentage of people aged 16 and over who are employed; 

Div - percentage of population who are divorced; 

Img - percentage of immigrants who immigrated within the last 10 years.

Linear Regression for histogram-valued variables   
Example: Crimes in USA

48



Cities States LEd Emp Div Img VC

Selma AL 16.59 46.94 13.35 73.86 2758.9

Bessemer AL 16.97 46.83 14.46 18.39 1257.09

Dothan AL 11.71 62.19 13.75 34.25 373.54

… … … … … … …

San Pablo CA 14.03 55.94 16.57 62.3 374.07

Glendale CA 11.54 60.04 11.12 60.4 644.75

… … … … … … …

Enfield CT 6.55 68.24 8.38 27.01 78.65

Newingtont CT 8.71 67.54 8.57 18.44 2127.02

New Haven CT 11.86 56.71 12.44 46.52 53.2

… … … … … … …

Rockledge FL 4.07 64.92 11.99 23.72 142.7

Ormond Beach FL 4.72 51.11 10.31 13.69 339.96

Sebastian FL 7.04 48.43 9.08 17.35 1981.45

… … … … … … …

Alpharetta GA 2.21 75.34 12.84 53 958.15

Valdosta GA 11.35 59.19 12.97 37.64 1358.47

… … … … … … …

Linear Regression for histogram-valued variables   
Example: Crimes in USA
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Contemporary aggregation for state. 

Higher level units:  USA states

Observations associated to each unit:  

•The distributions of the records of the 

cities of  the respective state;

•In all observations, the subintervals of 

each histogram have the same weight 

(equiprobable) with frequency 0.20.

Goal: Study the criminality in the USA states

States LEd … VC

AL …

CA …

CT …

FL …

… … … …

Linear Regression for histogram-valued variables   
Example: Crimes in USA

50



DSD Model I

•.

DSD Model II

•.
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Example: Crimes in USA
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Linear Regression for histogram-valued variables   
Example: Crimes in USA
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Predicted distribution of LVC:

Interpretation:

� The variables LEd, Div and Img have a direct influence in the logarithm of the number of 

violent crimes. The percentage of employed people, Emp, has an opposite effect.

� For the set of states to which the data refer, when the symbolic mean of the percentage 

of divorced population increases 1% and the other variables remain constant, the 

symbolic mean of the LVC increases 0.172.  

For each unit j, let              be the distribution predicted by the DSD Model  I and consider 

the parameters obtained for the optimal solution b*=(a
1
*, b

1
*, a

2
* ,b

2
*,… ,a

n
*, b

n
* , v *). 

The mean of the predicted histogram-valued variable      is given by                                             ( )* * *
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Linear Regression for histogram-valued variables   
Example: Crimes in USA

Models RMSE
L

RMSE
U

RMSE
M

CM 0.9182 0.5617 0.6717

IV 0.5214 0.3444 0.3933

DSD I 0.5571 0.4233 0.4477

DSD II 0.5164 0.3992 0.4237

Evaluate the performance of the models
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Linear Regression for histogram-valued variables   
Example: Crimes in USA
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Observed and predicted quantile functions considering different methods
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