Chapter 10

Grover’s algorithm

In this chapter, we present the search algorithm given by Grover, which
brings us a quadratic speed up when compared to classical algorithms. The
aim is to determine whether a given element is in a given list. But, we
present the problem in a general form. This chapter is written by modifying
the corresponding chapters given in the lecture notes of John Watrous:

https : //cs.uwaterloo.ca/ watrous/LectureN otes.html

Suppose that we are given a function

f:{0,1}" — {0,1}.

Form the previous section, we know that we can design a reversible gate By
for any such function that behaves as follows:

Bylz)la) = [z)|a ® f(x)),

where z € {0,1}" is any input and a € {0, 1} is the ancilla qubit. Then, we
can have a circuit using By. The generic problem here is to find an input
making the value of the function f 1 or to say that there is no such an input.
Classically, we need to test all possible 2" inputs. Probabilistically, a best
strategy can be picked some possible inputs randomly and then test them.
But, we still need to test {2(2") inputs for any fixed error bound. Each test
can be seen as a query to the black-box and so we can define it as a complexity
measure here. Remark that the quantum query complexity is a fundamental
complexity measure among the scientist working on quantum algorithms.
The classical query complexity of our problem is €2(2"). We show that the
quantum query complexity of the problem is O(y/2"). The main difference
from the classical case is that we can query all possible inputs at once in a
superposition, but, it is not sufficient to give the correct answer with high
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probability. However, we can separate bad and good inputs by using some
quantum tricks and then cleverly amplify the amplitudes of the good inputs,
which uses O(v/2") queries.

The description of Grover’s search algorithm is very simple: after the
initialization, we apply a combination unitary operators (a combination of
two reflections leading to a rotation) for £ times and then make a measure-
ment. Before giving the description of the algorithm, we define the unitary
operators in this combinations, operating on n qubits:

Zslz) = (=1)"?|z)

and, a special case of Zy,

=z ifx=0"
ZO_{ |z) ifx#0"

where x € {0,1}". From the previous part, we know how to define such
unitary matrices by help of phase kick-back effect that uses the black-box By
and an ancilla qubit. You can find the diagram below:

=
I
1
1
I
I
I
i

Remark that Z; uses a single query to By. The transformation Z is a special
case of Z¢, where the function returns 1 only if the input is 0". With the
ancilla qubit, the black By makes the following transformation:

|z)|a) — |z)|a @ (—zg A+ A =),

When we replace By with By in the above diagram, we obtain the circuit
diagram for Z,. Note that Z; does not need to use any query to By.
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THE ALGORITHM

The input: n-qubit quantum register (X), initialized to |0™)
The outputl: = € {0,1}" satisfying f(z) =1 or
The output2: an arbitrary x if f is constant, returning 0
Apply H®"
Repeat k times

Apply G = —H®"ZyH®"Z; on X
Measure X and output the result

Here is a graphical representation of how two reflections can implement
a rotation.

In the algorithm, H®"ZyH®" and —Z; are kinds of reflections and so
their combination G = —H®"ZyH®"Z; is a rotation by a particular angle.
Before, representing their affects, we define the bad and good input(s):

A={ze{0,1}" [ f(x)
B={zxec{0,1}"| f(z)

1}
0}
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Let their sizes be a = |A| and b = | B, respectively. If a = 0 or b = 0, the
algorithm always returns a correct answer exactly. So, we assume that a # b

in the remaining part. We also define a two orthogonal vectors based on the
sets A and B:

1
|A>=%ZIUC>

z€EA

1
|B>=%ZI$>

zeB

Now, we trace the computation. Let N = 2". At the beginning of the
computation, we create a superposition of all inputs with equal amplitude:

!h>:H®”!0">:% > o,

which can be rewritten as

= o+ s

We trace the computation by omitting the ancilla qubit. The reader can
verify that when implementing Z; and Zj, the ancilla qubit starts in state
|0) and then returns again to |0) for the next usage. The matrix form of Z,
is

~100 -0
010 -0
Zo=| 001 - |,
000 1

which can be written as
Zo =1 —2|0")(0",

where [0™)(0"| is a zero matrix expect the first diagonal entry, which is 1. By
using this representation, we can obtain that

H®"ZyH®™ = H®"(I — 2|0™)(0™|) H®",
and, since H' = H = H™!, we gets

HEMTH®™ — 2H(0)(0|H®™ = I — 2|h){h].
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Note that, as defined above |h) = H®"|0), and so (h| = (0|(H®")" = (0| H,.
Now, we see the affect of G on |A) and |B):

GlA) = —H®"ZyH®"Z,|A)
= (I = 2[h)(h])(=Z)|A)
= (I = 2(h)(n[)|A)
= |A) = 2[h)(h[|A)

— 14 -2 ([ 41+ J%Br) A
= 1) -2y
= -2/t <\/%|A>+\/%3>>

= (1-2) 10 - 2

and

G|A) = —H®"Z,H®"Z,|B)

= —(I =2[h)(r)(Z)|B)
= —(I —2|h)(h))|B)
= —|B) +2|h){h||B)

1B+ 2) <\/%<A| + J%Br) )
— 1B+ 2L
_ ]B—2[<[|A \/7\19)

= 20— (1-2)im)

We end up as a linear combination of |A) and |B). Therefore, we can say
that G maps a vector in the space spanned by {|A),|B)} to a vector in the
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same space:

b—a _2\/%

Gla) = =ty - 2 g
6By — 2yt hyp),

We represent G as a single matrix partitioned based on the elements by A’s
and B’s. Suppose that the first part is for B and the second part is for A:

b—a 2ab

N N
M=

2ab b—a

N N

Matrix M is a rotation matrix since it is indeed a square of the rotation

matrix
b a
Vi -vE

Ry ,
with angle 6 € (0,7/2) satisfying sinf = /% and cosf = \/%:
cosf —sind
Fo = ( sinf  cos@ )

The equality M = R2 = Ry can be followed as

b—a 2ab
b a b a -
N _\/% N _\/% N N
RS = = = M = Ry.
a b a b 2ab b—a
N N N N W N

Then, we can say that G makes an rotation by the angle 26 in the space
spanned by {|A),|B)}. Then, we can rewrite the initial state |h) as

|h) = \/%|B) + \/%M) = cosf|B) +sinf|A).

So after a single iteration of (G, we obtain the new state as

cos(36)|B) + sin(30)|A),
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and so, after the k iterations, the new state will be
cos((2k +1)0)|B) + sin((2k 4 1)0)|A).

You can see a single rotation implemented by G on a state |¢):

Now, we can determine the value of k. Any k satisfying
sin((2k +1)0) ~ 1

leads us to obtain a quantum algorithm giving a correct answer with high
probability. Then, the value of k£ can be determined by

™

T 1

If there is a single good input, a = 1, then we can calculate k as follows:

1
sinﬁzw%isinezwﬁ,

1 1
0 =sin"ty/—

N N
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We can pick k as

k=78
which would be our quantum query complexity. Then, the accepting proba-
bility will be

sin®((2k + 1)8).

If we compute the possible accepting probabilities for N = 2,4,8,...,2" ...,
we will see that the accepting probability takes the values respectively at
least

0.5,1.0,0.94,0.96,0.99,0.99, . ...

We can compute k and follow the related analyses for other possible values of
a’s. But, as a programmer, we usually do not know the value of a in advance.
We can use many different strategies. One proposed strategy is given below:

Set m =1
Repeat
Choose k € {1,...,m + 1} uniformly
Execute Grover’s algorithm
Stop the computation if the found z satisfies f(z) =1
Set m = | (8/7)m]
Until m > VN
Output that f is a constant function, equal to 0.

This strategy finds a good input a with a probability at least i by using

0

queries, where the success probability can be amplified by using this strategy
a few more times.
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