Chapter 10

Grover’s algorithm

In this chapter, we present the search algorithm given by Grover, which
brings us a quadratic speed up when compared to classical algorithms. The
aim is to determine whether a given element is in a given list. But, we
present the problem in a general form. This chapter is written by modifying
the corresponding chapters given in the lecture notes of John Watrous:

https : //cs.uwaterloo.ca/ watrous/LectureN otes.html

Suppose that we are given a function

f:{0,1}" — {0,1}.

Form the previous section, we know that we can design a reversible gate By
for any such function that behaves as follows:

Bylz)la) = [z)|a ® f(x)),

where z € {0,1}" is any input and a € {0, 1} is the ancilla qubit. Then, we
can have a circuit using By. The generic problem here is to find an input
making the value of the function f 1 or to say that there is no such an input.
Classically, we need to test all possible 2" inputs. Probabilistically, a best
strategy can be picked some possible inputs randomly and then test them.
But, we still need to test {2(2") inputs for any fixed error bound. Each test
can be seen as a query to the black-box and so we can define it as a complexity
measure here. Remark that the quantum query complexity is a fundamental
complexity measure among the scientist working on quantum algorithms.
The classical query complexity of our problem is €2(2"). We show that the
quantum query complexity of the problem is O(y/2"). The main difference
from the classical case is that we can query all possible inputs at once in a
superposition, but, it is not sufficient to give the correct answer with high

95

probability. However, we can separate bad and good inputs by using some
quantum tricks and then cleverly amplify the amplitudes of the good inputs,
which uses O(v/2") queries.

The description of Grover’s search algorithm is very simple: after the
initialization, we apply a combination unitary operators (a combination of
two reflections leading to a rotation) for £ times and then make a measure-
ment. Before giving the description of the algorithm, we define the unitary
operators in this combinations, operating on n qubits:

Zslz) = (=1)"?|z)

and, a special case of Zy,

=z ifx=0"
ZO_{ |z) ifx#0"

where x € {0,1}". From the previous part, we know how to define such
unitary matrices by help of phase kick-back effect that uses the black-box By
and an ancilla qubit. You can find the diagram below:

=
I
1
1
I
I
I
i

Remark that Z; uses a single query to By. The transformation Z is a special
case of Z¢, where the function returns 1 only if the input is 0". With the
ancilla qubit, the black By makes the following transformation:

|z)|a) — |z)|a @ (—zg A+ A =),

When we replace By with By in the above diagram, we obtain the circuit
diagram for Z,. Note that Z; does not need to use any query to By.

26

THE ALGORITHM

The input: n-qubit quantum register (X), initialized to |0™)
The outputl: = € {0,1}" satisfying f(z) =1 or
The output2: an arbitrary x if f is constant, returning 0
Apply H®"
Repeat k times

Apply G = —H®"ZyH®"Z; on X
Measure X and output the result

Here is a graphical representation of how two reflections can implement
a rotation.

In the algorithm, H®"ZyH®" and —Z; are kinds of reflections and so
their combination G = —H®"ZyH®"Z; is a rotation by a particular angle.
Before, representing their affects, we define the bad and good input(s):

A={ze{0,1}" [f(x)
B={zxec{0,1}"| f(z)

1}
0}

o7

Let their sizes be a = |A| and b = | B, respectively. If a = 0 or b = 0, the
algorithm always returns a correct answer exactly. So, we assume that a # b

in the remaining part. We also define a two orthogonal vectors based on the
sets A and B:

1
|A>=%ZIUC>

z€EA

1
|B>=%ZI$>

zeB

Now, we trace the computation. Let N = 2". At the beginning of the
computation, we create a superposition of all inputs with equal amplitude:

!h>:H®”!0">:% > o,

which can be rewritten as

= o+ s

We trace the computation by omitting the ancilla qubit. The reader can
verify that when implementing Z; and Zj, the ancilla qubit starts in state
|0) and then returns again to |0) for the next usage. The matrix form of Z,
is

~100 -0
010 -0
Zo=| 001 - |,
000 1

which can be written as
Zo =1 —2|0")(0",

where [0™)(0"| is a zero matrix expect the first diagonal entry, which is 1. By
using this representation, we can obtain that

H®"ZyH®™ = H®"(I — 2|0™)(0™|) H®",
and, since H' = H = H™!, we gets

HEMTH®™ — 2H(0)(0|H®™ = I — 2|h){h].

o8

Note that, as defined above |h) = H®"|0), and so (h| = (0|(H®")" = (0| H,.
Now, we see the affect of G on |A) and |B):

GlA) = —H®"ZyH®"Z,|A)
= (I = 2[h)(h])(=Z)|A)
= (I = 2(h)(n[)|A)
= |A) = 2[h)(h[|A)

— 14 -2 ([41+ J%Br) A
= 1) -2y
= -2/t <\/%|A>+\/%3>>

= (1-2) 10 - 2

and

G|A) = —H®"Z,H®"Z,|B)

= —(I =2[h)(r)(Z)|B)
= —(I —2|h)(h))|B)
= —|B) +2|h){h||B)

1B+ 2) <\/%<A| + J%Br))
— 1B+ 2L
_]B—2[<[|A \/7\19)

= 20— (1-2)im)

We end up as a linear combination of |A) and |B). Therefore, we can say
that G maps a vector in the space spanned by {|A),|B)} to a vector in the

59

same space:

b—a _2\/%

Gla) = =ty - 2 g
6By — 2yt hyp),

We represent G as a single matrix partitioned based on the elements by A’s
and B’s. Suppose that the first part is for B and the second part is for A:

b—a 2ab

N N
M=

2ab b—a

N N

Matrix M is a rotation matrix since it is indeed a square of the rotation

matrix
b a
Vi -vE

Ry ,
with angle 6 € (0,7/2) satisfying sinf = /% and cosf = \/%:
cosf —sind
Fo = (sinf cos@)

The equality M = R2 = Ry can be followed as

b—a 2ab
b a b a -
N _\/% N _\/% N N
RS = = = M = Ry.
a b a b 2ab b—a
N N N N W N

Then, we can say that G makes an rotation by the angle 26 in the space
spanned by {|A),|B)}. Then, we can rewrite the initial state |h) as

|h) = \/%|B) + \/%M) = cosf|B) +sinf|A).

So after a single iteration of (G, we obtain the new state as

cos(36)|B) + sin(30)|A),

60

and so, after the k iterations, the new state will be
cos((2k +1)0)|B) + sin((2k 4 1)0)|A).

You can see a single rotation implemented by G on a state |¢):

Now, we can determine the value of k. Any k satisfying
sin((2k +1)0) ~ 1

leads us to obtain a quantum algorithm giving a correct answer with high
probability. Then, the value of k£ can be determined by

™

T 1

If there is a single good input, a = 1, then we can calculate k as follows:

1
sinﬁzw%isinezwﬁ,

1 1
0 =sin"ty/—

N N
61

and so

We can pick k as

k=78
which would be our quantum query complexity. Then, the accepting proba-
bility will be

sin®((2k + 1)8).

If we compute the possible accepting probabilities for N = 2,4,8,...,2" ...,
we will see that the accepting probability takes the values respectively at
least

0.5,1.0,0.94,0.96,0.99,0.99,

We can compute k and follow the related analyses for other possible values of
a’s. But, as a programmer, we usually do not know the value of a in advance.
We can use many different strategies. One proposed strategy is given below:

Set m =1
Repeat
Choose k € {1,...,m + 1} uniformly
Execute Grover’s algorithm
Stop the computation if the found z satisfies f(z) =1
Set m = | (8/7)m]
Until m > VN
Output that f is a constant function, equal to 0.

This strategy finds a good input a with a probability at least i by using

0

queries, where the success probability can be amplified by using this strategy
a few more times.

62

